Tagungsband zum Sommerkolloquium Bauphysik

11. und 26. Mai 2023

Seminarreihe des Studiengangs Bauphysik an der HFT-Stuttgart mit Themenschwerpunkten zur angewandten Bauphysik und Energieeffizienz

INHALT

Martin Schneider - Hochschule für Technik Stuttgart Neues Prüfverfahren und Berechnung des Trittschallschutzes mit Anschlusselementen für Balkone und Laubengänge

Peter Wirsching, M.Sc. - GN Bauphysik *Blower-Door Messungen in der Praxis*

Robert Otto M.Sc. - Hochschule für Technik Stuttgart KI – Und die unspektakuläre Anwendung im Zentrum für nachhaltige Energietechnik

M.Sc. Dipl.-Ing. (FH) Frank Hettler - Zukunft Altbau

Wie mindern wir die Emissionen im Gebäudesektor? Über Klimaschutzgesetze, GEG, BEG und KMR

Prof. Dr. Berndt Zeitler - Hochschule für Technik Stuttgart *Die unaufhaltbaren tiefen Frequenzen in der Klubkultur*

Mathis Evers - Krämer-Evers Bauphysik GmbH & Co. KG *Nachhaltigkeit und Bauphysik*

Sommerkolloquium Bauphysik 2023

Neues Prüfverfahren und Berechnung des Trittschallschutzes mit Anschlusselementen für Balkone und Laubengänge

M.Sc. Dipl.-Ing. (FH) Martin Schneider Hochschule für Technik Stuttgart

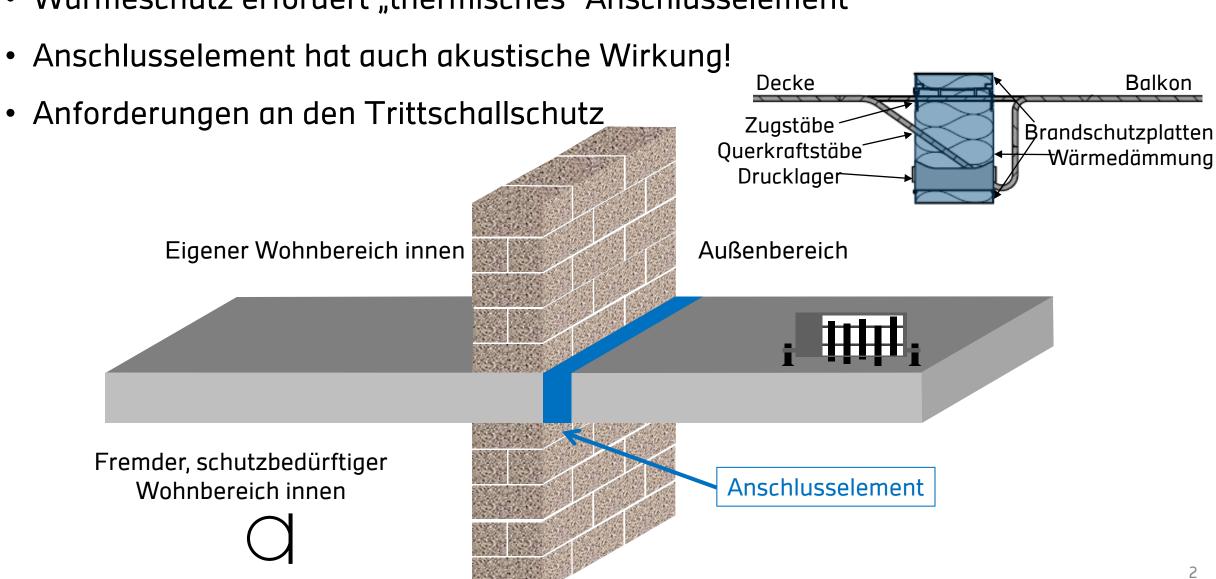
Balkone und Laubengänge werden zur Verminderung der Wärmeübertragung in der Regel durch thermische Trennelemente (z.B. Isokorb) vom Gebäude getrennt. Gleichzeitig wird der Trittschallschutz zwischen Balkon bzw. Laubengang und angrenzenden schutzbedürftigen Räumen durch diese Elemente verbessert. In dem Vortrag wird das Prüfverfahren zur Bestimmung der bewerteten Trittschallminderung der Trennelemente und die Berechnung des zu erwartenden Trittschallschutzes unter Berücksichtigung dieser Trennelemente vorgestellt.

Neues Prüfverfahren und Berechnung des Trittschallschutzes mit Anschlusselementen für Balkone und Laubengänge

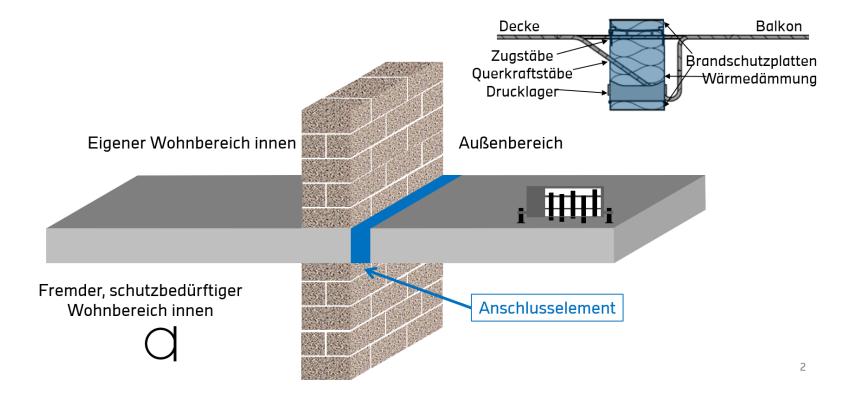
M.Sc. Dipl.-Ing. (FH) Martin Schneider M.Sc. Lucas Heidemann, Dr. Jochen Scheck, Prof. Dr.-Ing. Berndt Zeitler

11.05.2023

Hochschule für Technik Stuttgart



GEFÖRDERT VOM



Trittschallschutz von Balkonen und Laubengängen Stuttgart

• Wärmeschutz erfordert "thermisches" Anschlusselement

- Motivation
- Anforderungen
- Prognoseverfahren
- Prüfverfahren
- Baumessungen
- Ausblick

- Motivation
- Anforderungen
- Prognoseverfahren
- Prüfverfahren
- Baumessungen
- Ausblick

Anforderungen – Normen und Regelwerke

- DIN 4109-1:2018 "Schallschutz im Hochbau Mindestanforderungen"
- DIN 4109-5:2020 "Schallschutz im Hochbau Erhöhte Anforderungen"
- DEGA-Empfehlung 103:2018 "Schallschutz im Wohnungsbau Schallschutzausweis"
- VDI 4100:2012 "Schallschutz im Hochbau Wohnungen Vorschläge für erhöhten Schallschutz"
- ISO/TS 19488 (2021-04) "Akustik Akustisches Klassifizierungssystem für Wohngebäude"

• ...

DIN 4109

Hochschule **für Technik Stuttgart**

- DIN 4109-1:2018-01
 - → Mindest-Anforderungen

DIN 4109-5:2020-08

→ Erhöhte Anforderungen

Tabelle 2 — Anforderungen an die Schalldämmung in Mehrfamilienhäusern, Bürogebäuden und in gemischt genutzten Gebäuden

Spalte	1	2	3	4	5		
				derunge	n _		
Zeile		Bauteile		$L'_{n,w}$	Bemerkungen		
			dB	dB			
					1		
7		Decken unter Terrassen und Loggien über Aufenthaltsräumen	_	≤ 50	Bezüglich der Luftschalldämmung gegen Außenlärm siehe Abschnitt 7.		
8		Decken unter Laubengängen	_	≤ 53	Die Anforderung an die Trittschall- dämmung gilt für die Trittschall- übertragung in fremde Aufenthalts- räume in alle Schallausbreitungs- richtungen.		
8.1		Balkone	_	≤ 58	Die Anforderung an die Trittschall- dämmung gilt für die Trittschall- übertragung in fremde Aufenthalts- räume in alle Schallausbreitungs- richtungen.		
7	'	Decken unter Terrassen und Loggien über Aufenthalts- räumen	_	≤ 45	_		
8		Decken unter Laubengängen	_	≤ 48	Die Anforderung an die Trittschall- dämmung gilt für die Trittschall- übertragung in fremde Aufenthaltsräume in alle Schallausbreitungsrichtungen.		
8.1		Balkone	_	≤ 58°	Die Anforderung an die Trittschall- dämmung gilt für die Trittschall- übertragung in fremde Aufenthaltsräume in alle Schallausbreitungsrichtungen.		

c Entspricht den Werten aus DIN 4109-1:2018-01.

Balkon, Loggia, Laubengang

Folgende Definitionen sind dem Duden entnommen:

Loggia:

nicht oder kaum vorspringender, nach der Außenseite nin offener, überdachter Raum im [Ober]geschoss eines Hauses

Terrasse:

größere Fläche an einem Haus für den Aufenthalt im Freien

Balkon:

vom Wohnungsinnern betretbarer offener Vorbau, der aus dem Stockwerk eines Gebäudes herausragt

DEGA-Empfehlung 103

Balkon:

Loggia, Terrasse: Überdachte oder nicht überdachte Fläche an einem Gebäude, die für den Aufenthalt im Freien vorgesehen ist und sich ganz oder teilweise über fremden Aufenthaltsräumen befindet Überdachte oder nicht überdachte Fläche an einem Gebaude, die für den Aufenthalt im Freien vorgesehen ist und vollständig aus dem Gebäude herausraat

Tabelle 4 Anforderungen Trittschall

	F	E	D	С	В	Α	A *
Decken [L' _{n,w}]	> 60 dB 1)	≤ 60 dB ¹⁾	≤ 50 dB	≤ 45 dB ¹⁾	≤ 40 dB ¹⁾	≤ 35 dB	≤ 30 dB
Balkone, Loggien, Terrassen, [L'n,w]	> 63 dB ¹⁾	≤ 63 dB ¹⁾	≤ 50 dB ²⁾	≤ 48 dB¹)	≤ 43 dB ¹⁾	≤ 38 dB	≤ 33 dB
Treppen, Podeste, Hausflure, Laubengänge [L'n,w]	> 63 dB ¹⁾	≤ 63 dB ¹⁾	≤ 53 dB ³⁾	≤ 48 dB ¹⁾	≤ 43 dB ¹⁾	≤ 38 dB	≤ 33 dB

Anmerkung zu Tabelle 4:

- austauschbarer Bodenbelag anrechenbar (rechnerisch nur bei geprüftem ΔL_w) 1)
- bei Balkonen Anforderung L'n,w ≤ 58 dB 2)
- bei Hausfluren Anforderung $L'_{n,w} \leq 50 \text{ dB}$ 3)

VDI 4100:2012-10

Alle Rechte vorbehalten © Verein Deutscher Ingenieure e.V., Düsseldorf 2012

Tabelle 2. Empfohlene Schallschutzwerte der Schallschutzstufen (SSt) in Mehrfamilienhäusern

Spalte	1	2	3	4	5	6	7
Zeile	Schallschutzkriterium			Kennzeichnende akustische Größe in dB	SSt I	SSt II	SSt III
2	Trittschall-	Mehrfamilien-	vertikal, horizontal	$L'_{nT,w}^{b)}$	≤ 51	≤ 44	≤ 37
	schutz	haus	oder diago- nal	2 ni,w	1	1	1 01

gilt auch für die Trittschallübertragung von Balkonen, Loggien, Laubengängen und Terrassen in fremde schutzbedürftige Räume

Anforderung an den Standard-Schalldruckpegel

$$L'_{\text{nT,w}} = L'_{\text{n,w}} + 10 \lg \frac{A_0 T_0}{0.16 V}$$

 A_0 : äquivalente Bezugs-Absorptionsfläche $(A_0 = 10 \text{ m}^2)$ in m^2

 T_0 : Bezugs-Nachhallzeit (T_0 = 0.5 s) in s

V: Volumen des Raums in m³

Zusammenfassung: Anforderungen

Anforderung erf. $L'_{n,w} \le 58 \text{ dB}$ ist sinnvoll:

- um sicherzustellen, dass keine Konstruktionen ausgeführt werden, welche einen schlechteren Trittschallschutz als übliche Stahlbetonbalkone aufweisen.
- da übliche und häufig ausgeführte Balkone aus Stahlbetonplatten mit üblichen Anschlusselementen oft ohne Zusatzmaßnahmen ausgeführt werden können.

Ein höherer Trittschallpegel gegenüber Wohnungstrenndecken und Laubengängen erscheint angemessen

- da Balkone in der Regel nicht ganzjährig genutzt werden.
- da die Nutzung auch aufgrund der Luftschallübertragung wahrnehmbar sein kann, so dass eine gegenseitige Rücksichtnahme erforderlich scheint.

Unterschiedliche Anforderungen an Loggien und Balkone sind aufgrund sehr individueller Grundrissgestaltung nicht nachvollziehbar

- Motivation
- Anforderungen
- Prognoseverfahren
- Prüfverfahren
- Baumessungen
- Ausblick

• Rechenverfahren DIN 4109-2 mit K_T -Wert:

$$L'_{\text{n,w}} = L_{\text{n,eq,0,w}} - \Delta L_{\text{W}} - K_{\text{T}} + u_{\text{prog}}$$

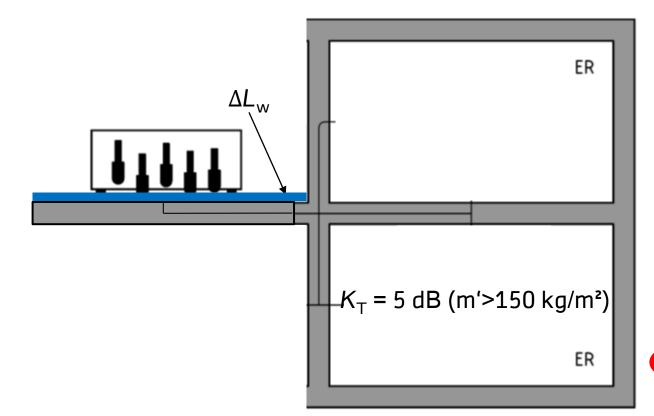


Tabelle 2 — Korrekturwert $K_{\rm T}$ zur Ermittlung des bewerteten Norm-Trittschallpegels $L'_{
m n,w}$ für unterschiedliche räumliche Zuordnungen von mit Norm-Hammerwerk^a angeregter Decke und Empfangsraum (ER)

Zeile			2	
Zene	Lage der Empfangsräume (ER)			
1	neben oder schräg unter der angeregten Decke	₽ ER OF ER OF ER	+5 ^b	
2	wie Zeile 1, jedoch ein Raum dazwischenliegend	₽ ER ER	+10 ^b	
3	über der angeregten Decke (Gebäude mit tragenden Wänden)	ER 🔷	+10°	
4	über der angeregten Decke (Skelettbau)	ERÓ []	+20	

• Rechenverfahren DIN 4109-2 mit K_{T} -Wert:

$$L'_{\text{n,w}} = L_{\text{n,eq,0,w}} - \Delta L_{\text{W}} - K_{\text{T}} + u_{\text{prog}}$$

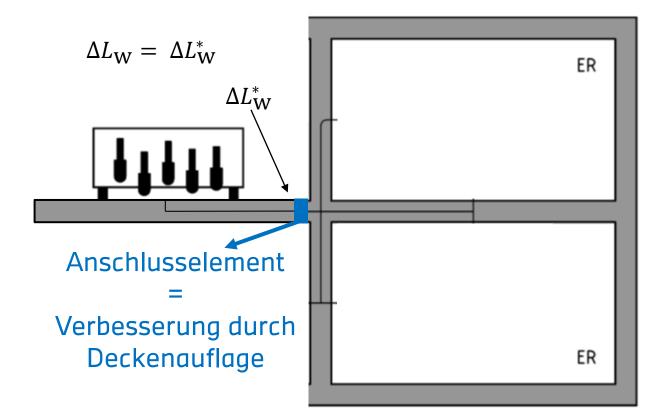
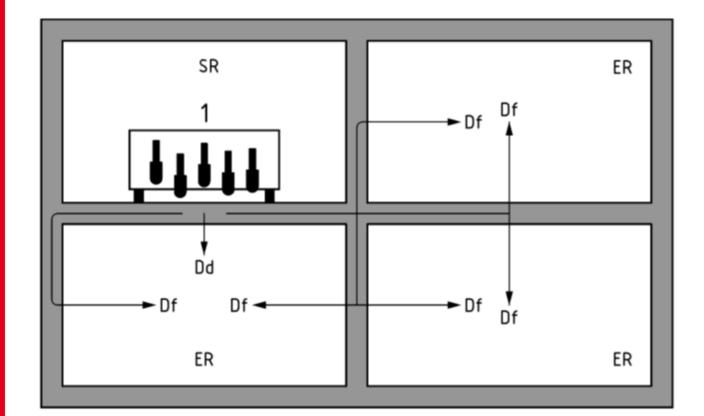


Tabelle 2 — Korrekturwert $K_{\rm T}$ zur Ermittlung des bewerteten Norm-Trittschallpegels $L'_{
m n,w}$ für unterschiedliche räumliche Zuordnungen von mit Norm-Hammerwerk^a angeregter Decke und Empfangsraum (ER)

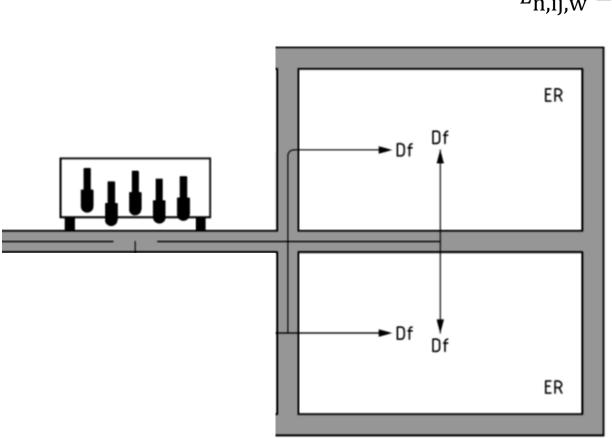
Spalte	1				
Zeile	Lage der Empfangsräume (ER)				
1	neben oder schräg unter der angeregten Decke	≯ IÓ I	+5 ^b		
2	wie Zeile 1, jedoch ein Raum dazwischenliegend	≯	+10 ^b		
3	über der angeregten Decke (Gebäude mit tragenden Wänden)	ER Ó	+10°		
4	über der angeregten Decke (Skelettbau)	ERÓ [+20		

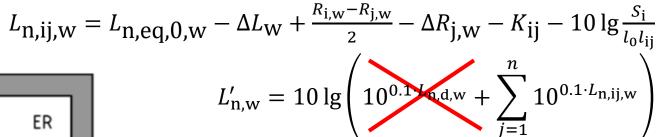
Norm-Hammerwerk nach DIN EN ISO 10140-5:2014-09, Anhang E.


b Voraussetzung: Zur Sicherstellung einer ausreichenden Stoßstellendämmung müssen die Wände zwischen angeregter Decke und Empfangsraum starr angebunden sein und eine flächenbezogene Masse m' ≥ 150 kg/m² haben.

c Dieser Korrekturwert gilt sinngemäß auch für Bodenplatten.

DIN EN ISO 12354-2:2017


• Berechnung dess bewerteten Norm-Flanken-Trittschallpegels $L_{\rm n,ij,w}$

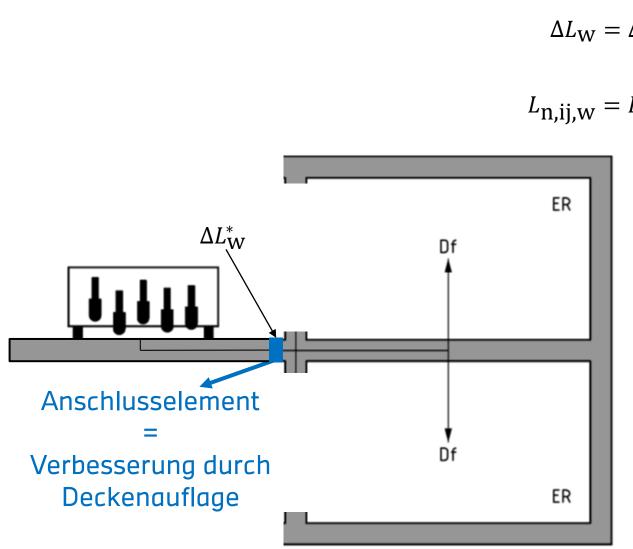

$$L_{\text{n,d,w}} = L_{\text{n,eq,0,w}} - \Delta L_{\text{w}} - \Delta L_{\text{d,w}} \qquad L_{\text{n,ij,w}} = L_{\text{n,eq,0,w}} - \Delta L_{\text{w}} + \frac{R_{\text{i,w}} - R_{\text{j,w}}}{2} - \Delta R_{\text{j,w}} - K_{\text{ij}} - 10 \lg \frac{S_{\text{i}}}{l_0 l_{\text{ij}}}$$

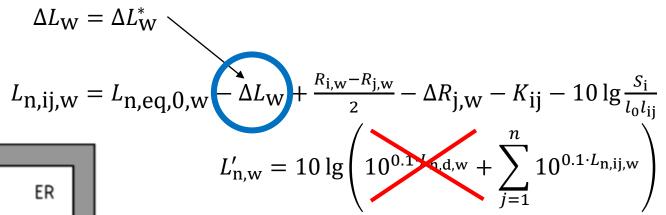
$$L'_{\text{n,w}} = 10 \lg \left(10^{0.1 \cdot L_{\text{n,d,w}}} + \sum_{j=1}^{n} 10^{0.1 \cdot L_{\text{n,ij,w}}} \right)$$

bei Balkonen oder Laubengängen:

DIN EN ISO 12354-2:2017

• bei Balkonen oder Laubengängen mit Fensterelementen:


$$L_{\text{n,ij,w}} = L_{\text{n,eq,0,w}} - \Delta L_{\text{w}} + \frac{R_{\text{i,w}} - R_{\text{j,w}}}{2} - \Delta R_{\text{j,w}} - K_{\text{ij}} - 10 \lg \frac{S_{\text{i}}}{l_0 l_{\text{ij}}}$$


$$L'_{\text{n,w}} = 10 \lg \left(10^{0.17 \text{f.d,w}} + \sum_{j=1}^{n} 10^{0.1 \cdot L_{\text{n,ij,w}}} \right)$$

$$K_{ij} = K_{ij,min} = 10 \lg \left[l_f l_0 \left(\frac{1}{S_i} + \frac{1}{S_j} \right) \right]$$

DIN EN ISO 12354-2:2017

• bei Balkonen oder Laubengängen:

$$K_{ij} = K_{ij,min} = 10 \lg \left[l_f l_0 \left(\frac{1}{S_i} + \frac{1}{S_j} \right) \right]$$

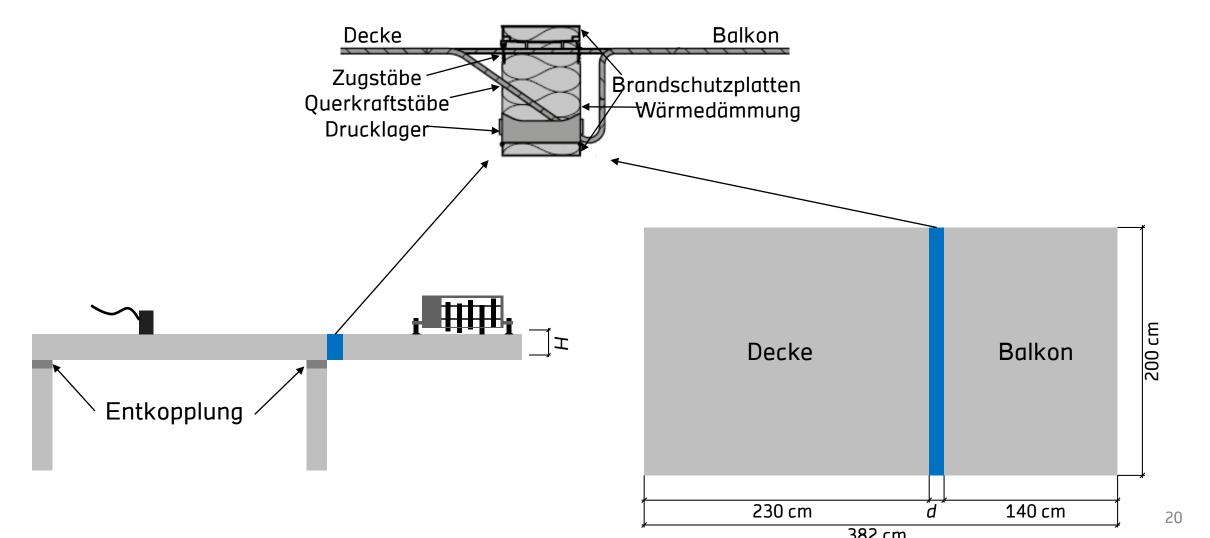
Zusammenfassung: Prognoseverfahren

Neues Rechenmodell der EN 12354-2:2017 ermöglicht die Berechnung von bewerteten Norm-Flankentrittschallpegeln

- Berechnung von horizontalen und diagonalen Übertragungssituationen ist damit möglich.
- Unterschiedliche Stoßstellen mit Anschlusselementen können berücksichtigt werden (Glaselemente - Massivwände).
- Vorsatzschalen und Deckenauflagen können ebenfalls berücksichtigt werden.

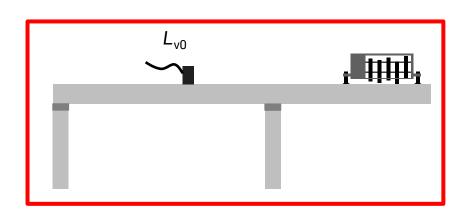
Umsetzung des neuen Rechenverfahrens durch Überarbeitung der DIN 4109-2

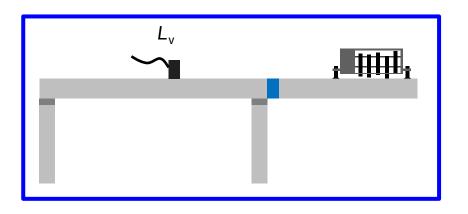
 Trittschallschutz von Balkonen und Laubengängen kann unter Berücksichtigung der Verbesserung durch einen Anschlusselement berechnet werden.


Notwendig ist ein Prüfverfahren zur Ermittlung der Trittschallpegeldifferenz/Trittschallpegelminderung von Anschlusselementen!

- Motivation
- Anforderungen
- Prognoseverfahren
- Prüfverfahren
- Baumessungen
- Ausblick

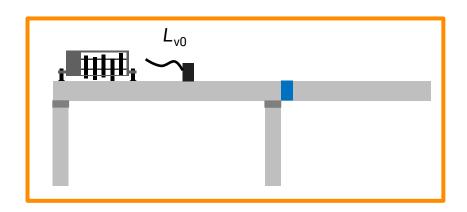
Prüfaufbau

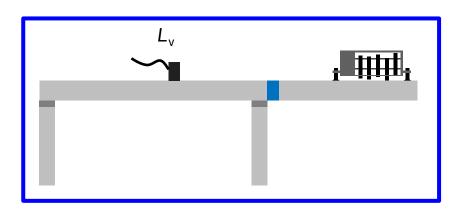

EAD 050001-01-0301 (2021) European Assessment Document (europäisches Bewertungsdokument) "Load bearing thermal insulating elements which form a thermal break between balconies and internal floors"


→ Wird aktuell umgesetzt in DIN 4109-4

Prüfverfahren - Trittschallpegeldifferenz

Kenngröße in EAD 050001-00-0301 (2018)




$$\Delta L^* = L_{v0} - L_{v}$$

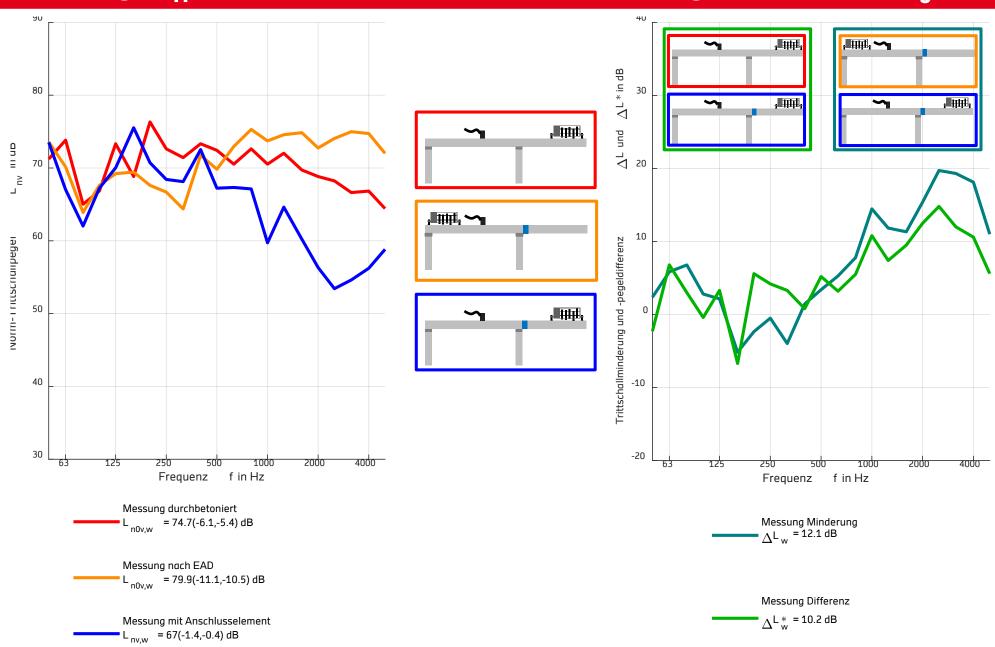
• Bewertete Trittschallpegeldifferenz ΔL_W^* nach DIN EN ISO 717-2

Prüfverfahren - Trittschallminderung

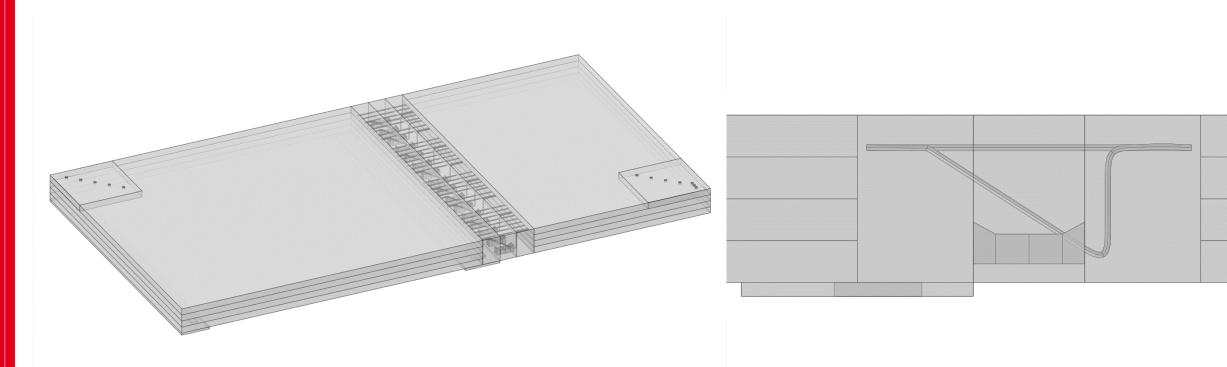
Kenngröße in EAD 050001-01-0301 (2021)

$$\Delta L = L_{v0} - L_{v}$$

• Bewertete Trittschallminderung ΔL_w nach DIN EN ISO 717-2

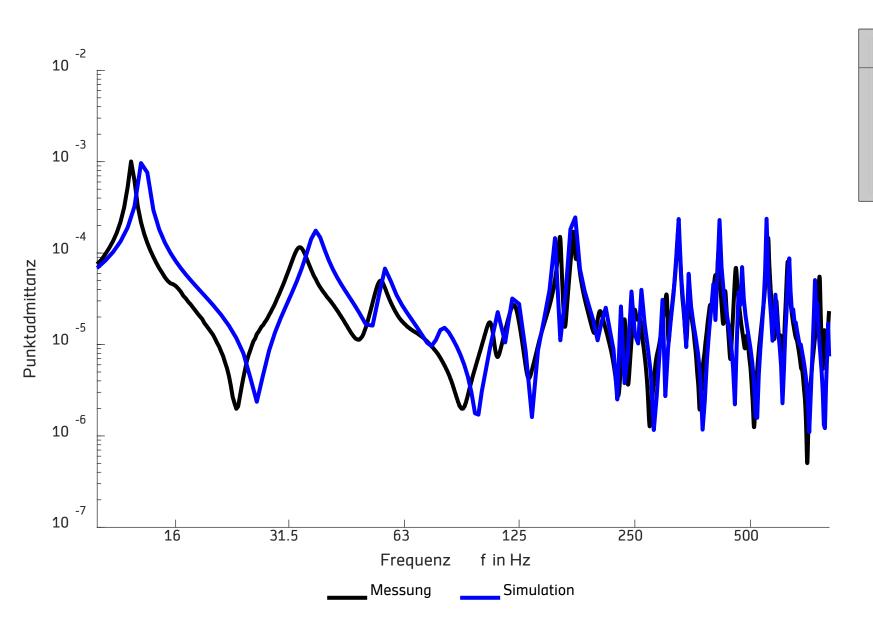

Anwendung des Prüfverfahrens

Prüfaufbau mit Isokorb® XT Typ K-M10-V2-REI120-CV35-H180-6.0

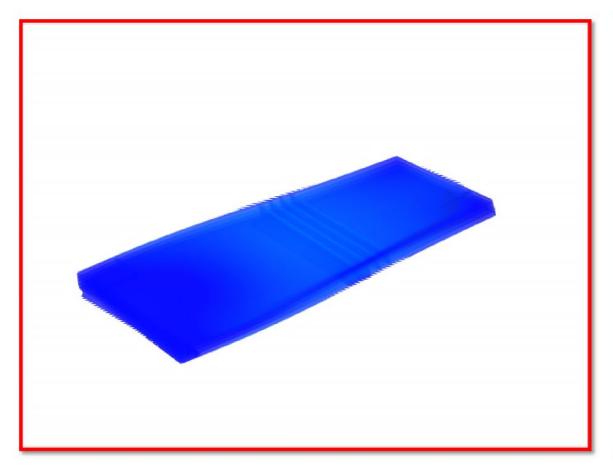


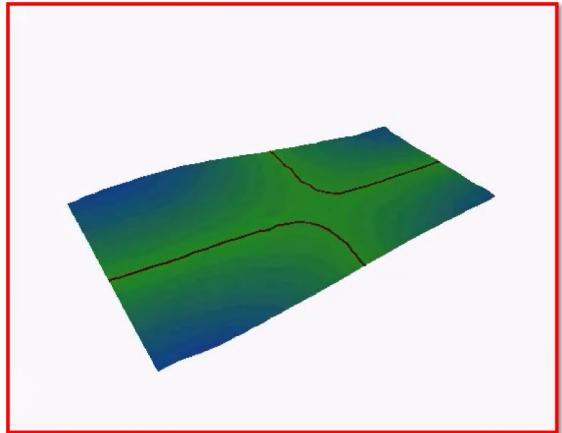
Messung L_n - Differenz und Minderung

Hochschule **für Technik Stuttgart**

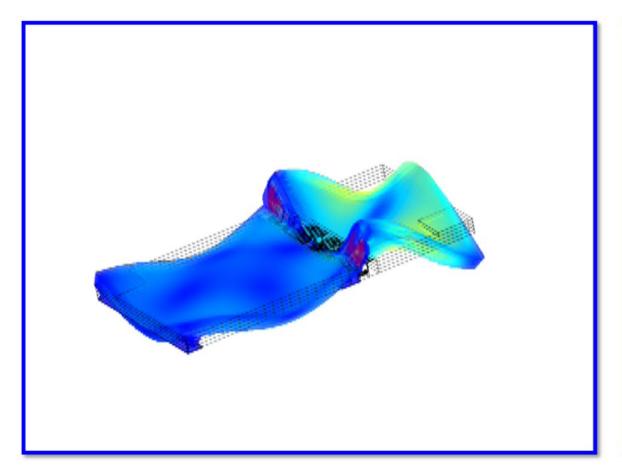


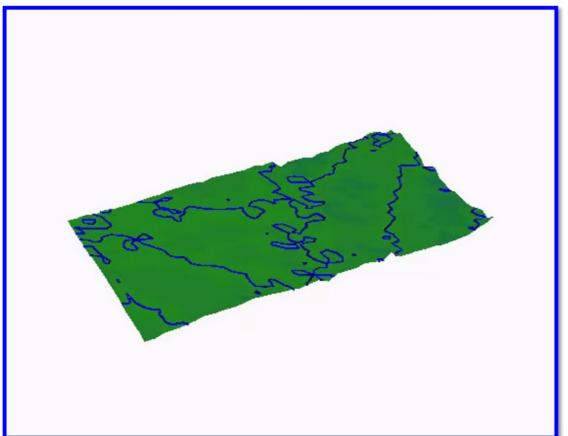
Finite Elemente Simulation (FEM)


Parameter	Beton	Schaumkörper	Drucklager	Stahl	Elastomerlager
Dichte	2300 kg/m³	30 kg/m³	2600 kg/m³	7800 kg/m³	826 kg/m³
Elastizitätsmodul	25e9 Pa	6e6 Pa	45e9 Pa	1.6e11 Pa	1e7 Pa
Poissonzahl	0,2	0,35	0,2	0,28	0,35
Verlustfaktor	0,005	0,1	0,005	1e-4	0,14
Maximale Elementgröße	14 cm		4 cm	3 cm	25


Punkt-Admittanz mit Trennelement

Schwingungsformen

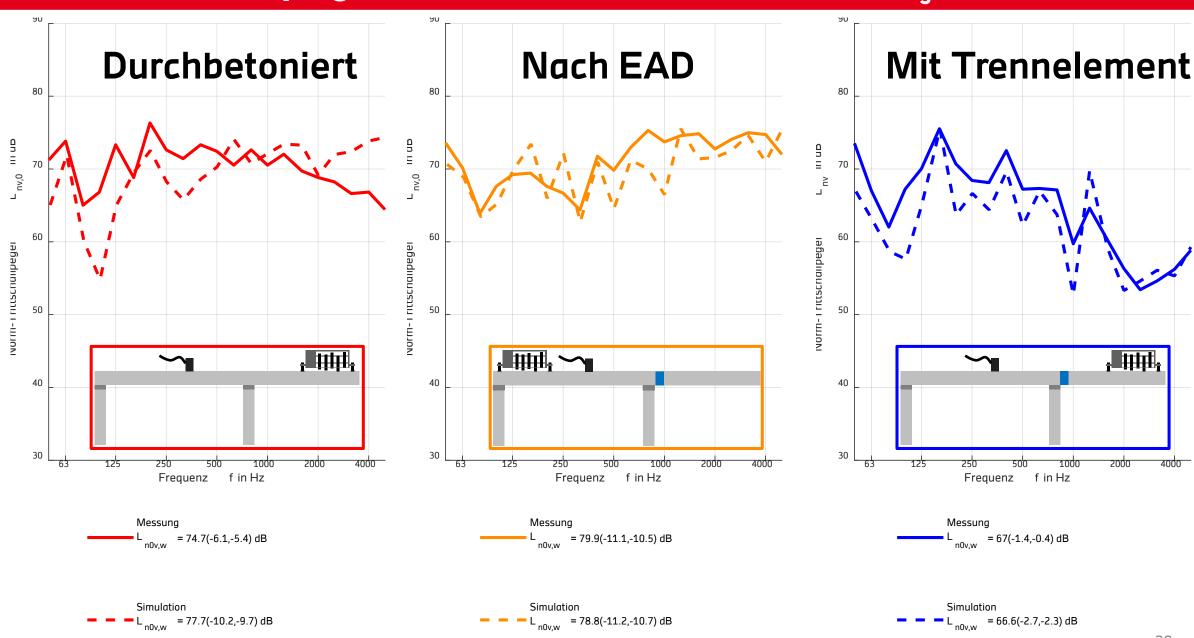


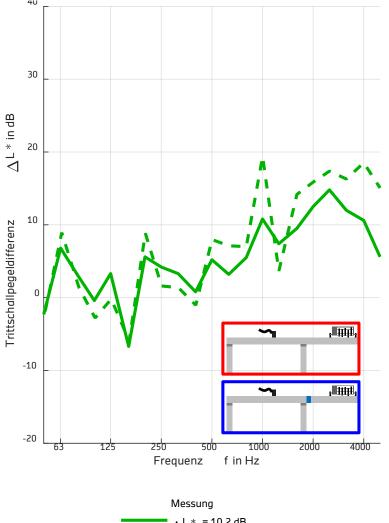


Simulation: 61,3 Hz

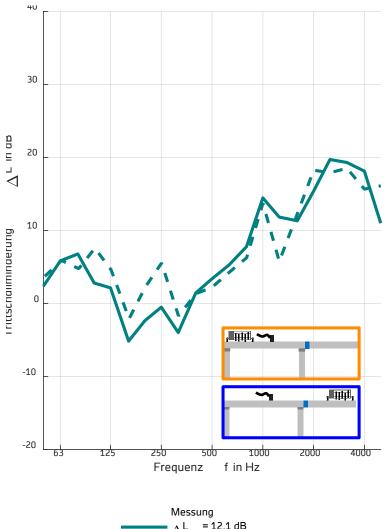
Messung: 58,9 Hz

Schwingungsformen

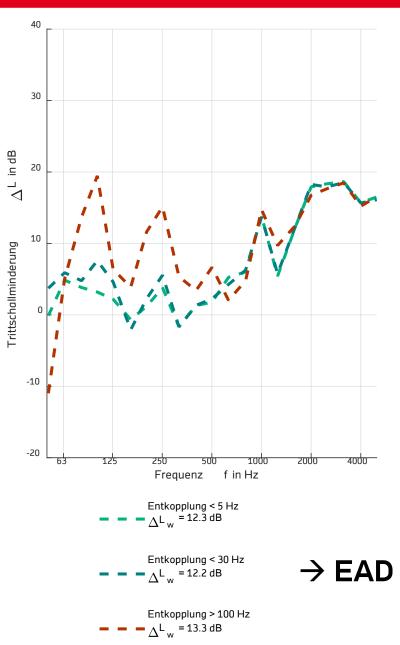


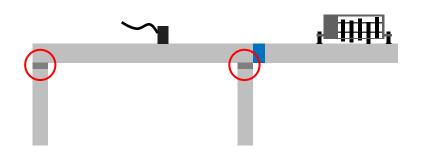

Simulation: 323 Hz Messung: 333 Hz

Norm-Trittschallpegel


Hochschule für Technik **Stuttgart**

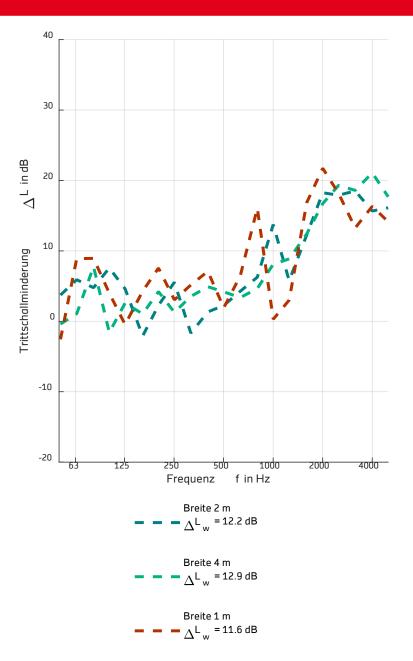
Hochschule für Technik Trittschallpegeldifferenz und Trittschallminderung Stuttgart

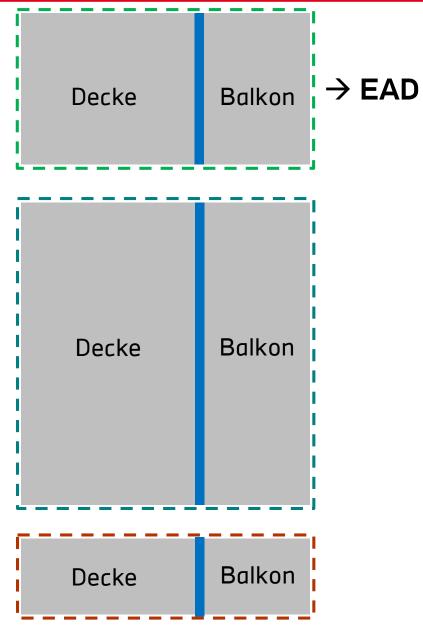


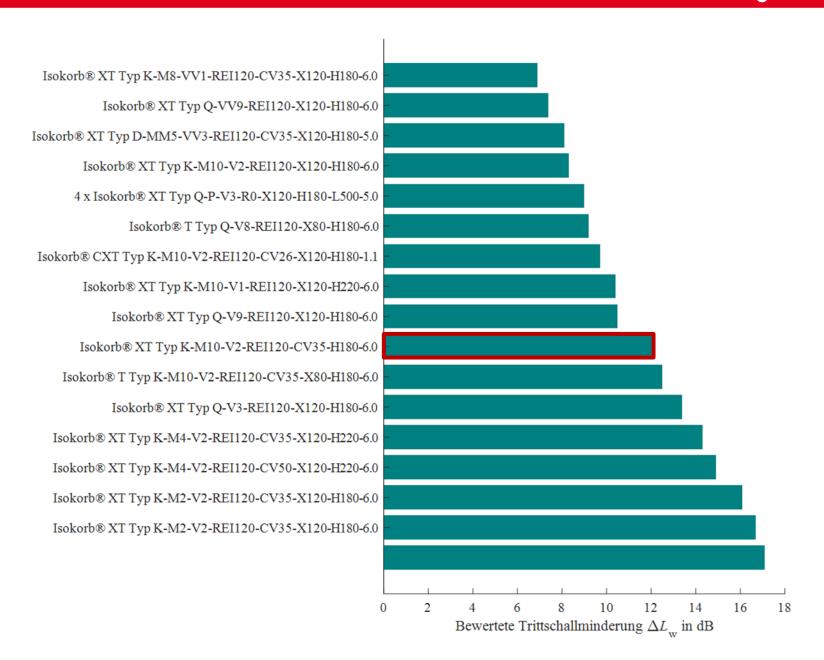


Messung
$$\Delta^{L}_{w} = 12.1 \text{ dB}$$

Simulation
$$- - - \Delta L_{w} = 12.2 \text{ dB}$$


Einfluss der Entkopplung (Auflager)




Dimensionen – Breite Balkon und Decke

Hochschule für Technik Stuttgart

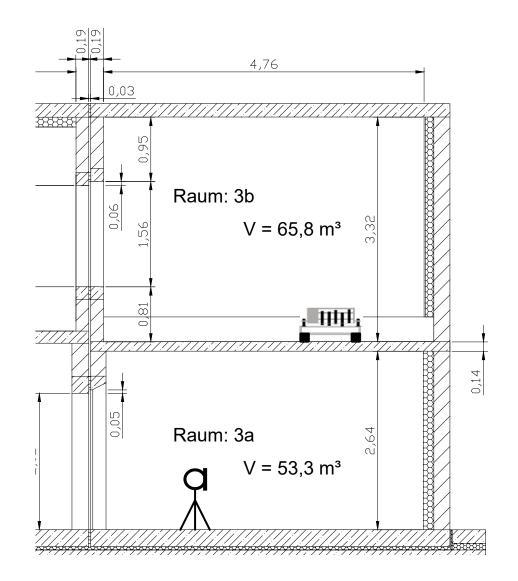
Geprüfte Isokörbe (Auszug)

Stelzlager Eurosystems

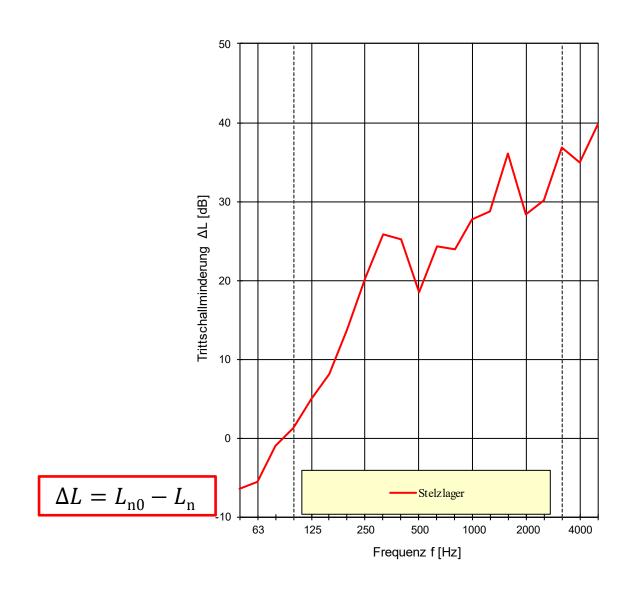
Teppichauflage

- Kann die Trittschallminderung von Auflagen am EAD Prüfstand bestimmt werden?
- Kann die Trittschallminderung von Anschluss-Elementen und Auflagen addiert werden?

Prüfung von Deckenauflagen nach DIN EN ISO 10140

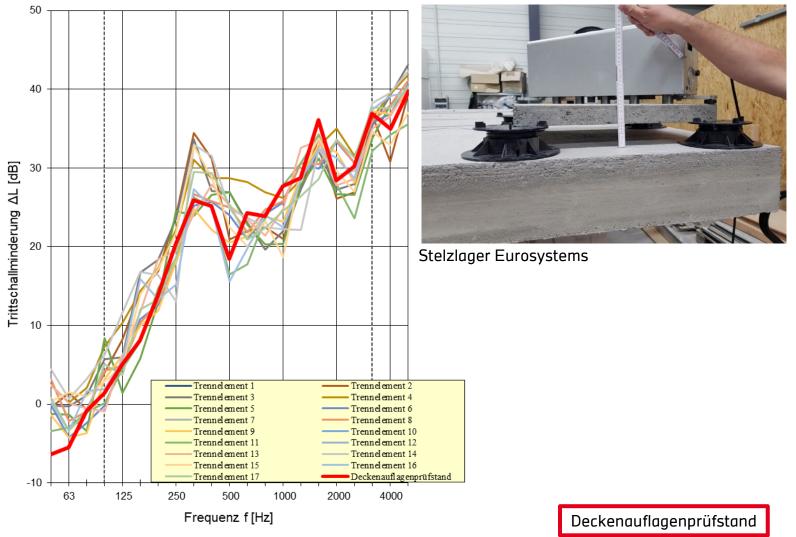

$$L_{\rm n} = L_{\rm i} + 10 \lg \frac{A}{A_0} \text{ [dB]}$$

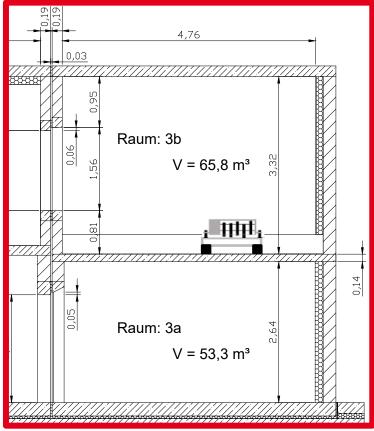
- L_n der Norm-Trittschallpegel des Prüfgegenstandes [dB]
- L_i der mittlere Schalldruckpegel im Empfangsraum [dB]
- A die äquivalente Absorptionsfläche im Empfangsraum [m²]
- A_0 die Bezugs-Absorptionsfläche $A_0 = 10 \text{ m}^2$

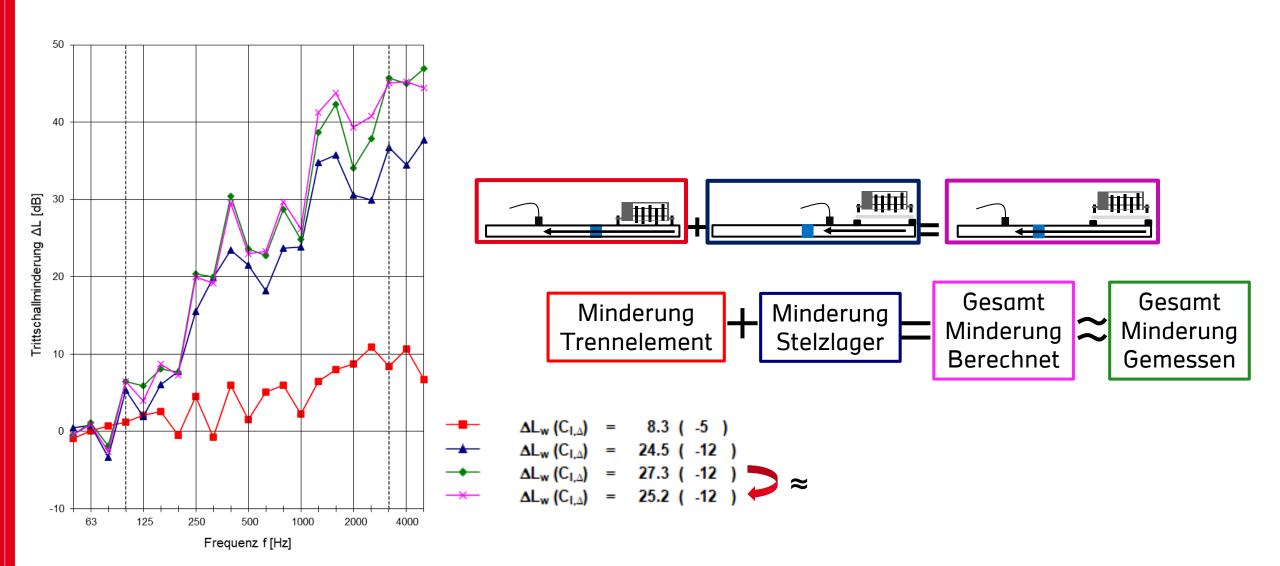

Trittschallminderung

$$\Delta L = L_{n0} - L_n \left[dB \right]$$

... Einzahlwerte nach DIN EN ISO 717-2






Trittschallminderung Stelzlager

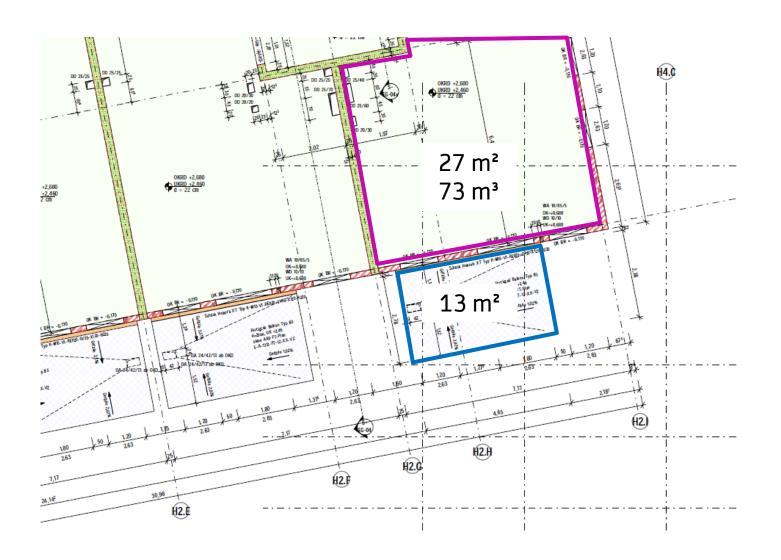
Deckenauflagenprüfstand vs. EAD-Prüfstand:

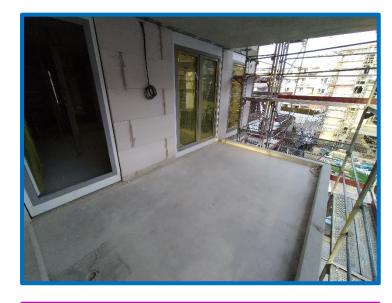
Rechnerische Addition von Minderungen

Zusammenfassung: Prüfverfahren

Neues Prüfverfahren ermöglicht schalltechnische Charakterisierung von Anschlusselementen

- Gleiche Dimensionen und der Balkon- und Deckenplatten führen zu vergleichbaren Ergebnissen bei verschiedenen Prüfstellen.
- Ermittlung von Einzahlangaben entsprechend DIN EN ISO 717-2 wie bei Deckenauflagen.
- Umsetzung des Prüfverfahrens in DIN 4109-4: Messtechnische Nachweise
- Deckenauflagen auf Balkonen können separat oder mit Anschlusselement geprüft werden

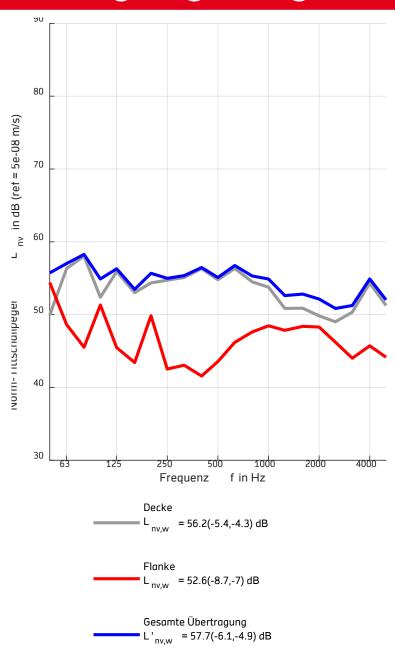

Ermittelte Werte können direkt in Rechenverfahren der DIN EN ISO 12354-2 und damit auch der zukünftigen DIN 4109-2 eingesetzt werden

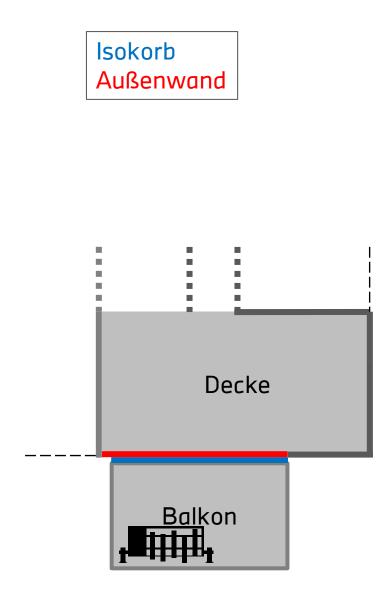

• Trittschallschutz von Balkonen und Laubengängen kann für unterschiedliche Anschlusselemente (und Deckenauflagen) berechnet werden.

- Motivation
- Anforderungen
- Prognoseverfahren
- Prüfverfahren
- Baumessungen
- Ausblick

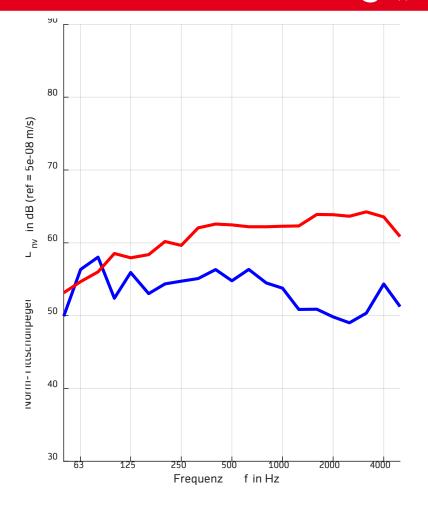
Hochschule für Technik **Stuttgart**

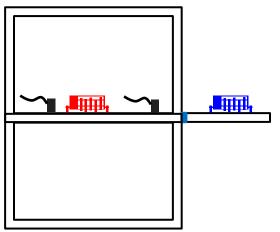
Baumessung

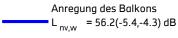


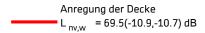


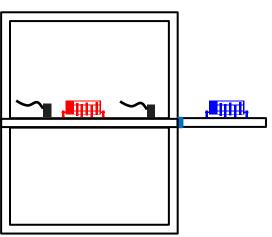
Übertragungswege

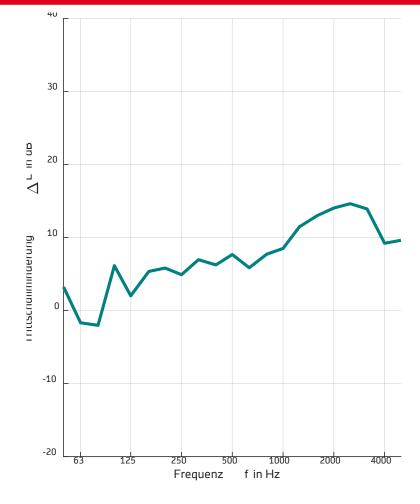

Hochschule für Technik **Stuttgart**

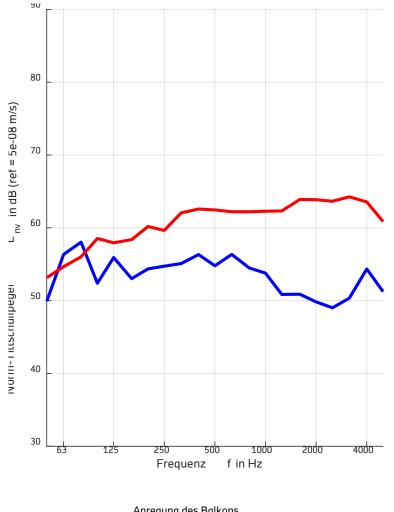


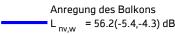


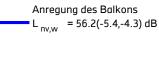

Trittschallminderung "in-situ"

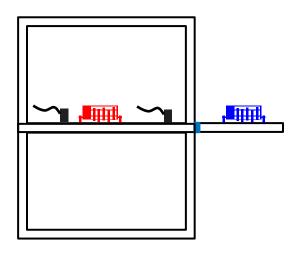

Hochschule für Technik **Stuttgart**



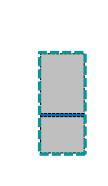


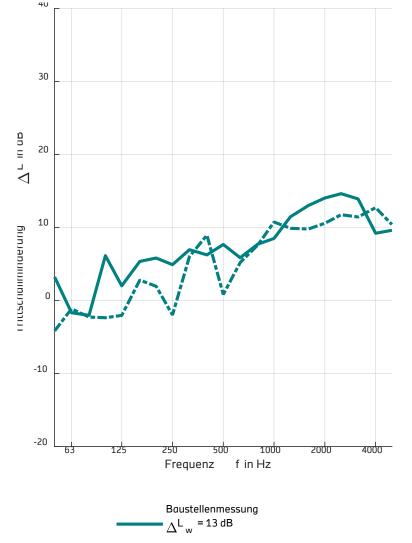


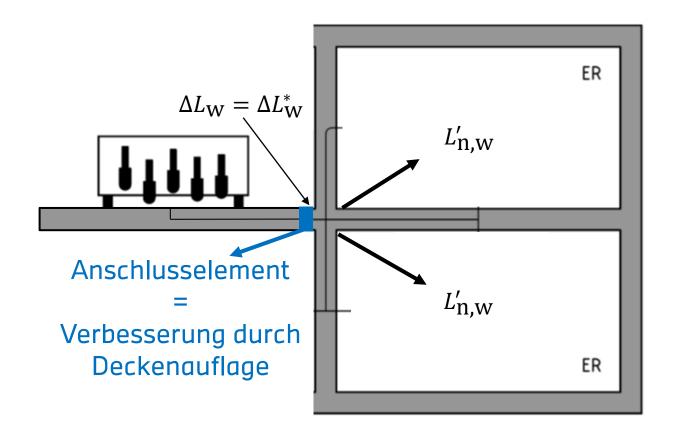

Baustellenmessung
$$\Delta^{L}_{w}$$
 = 13 dB


Trittschallminderung "in-situ" und EAD

Hochschule für Technik **Stuttgart**







Labormessuna

• Rechenverfahren DIN 4109-2

Laubengang mit Massivwand $K_T = 5 dB$:

$$L'_{\text{n,w}} = L_{\text{n,eq,0,w}} - \Delta L_{\text{w}} - K_{\text{T}} + u_{\text{prog}}$$

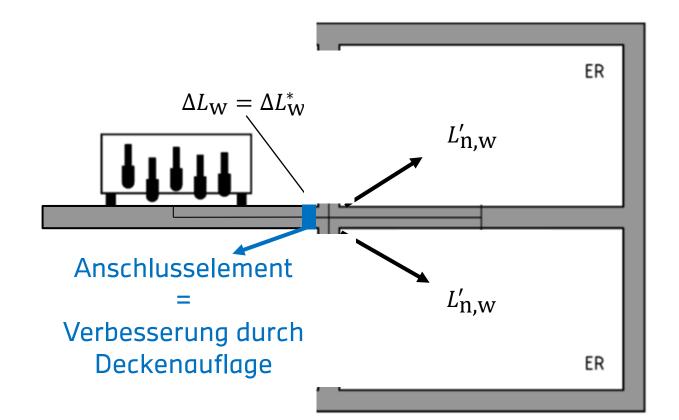
Anwendung auf die Baumessung

$$L_{\text{n,eq,0,w}} = 164 - 35 \cdot \lg m' = 68.7 \text{ dB}$$

$$K_{\mathrm{T}} = 5 \mathrm{dB}$$
 $\Delta L_{\mathrm{W}} = 11 \mathrm{dB}$

$$\mu_{\text{prog}} = 3 \text{ dB}$$

$$L'_{n,w} = (68.7 - 11 - 5 + 3) dB = 55.7 dB$$


Prognose nach 4109-2:

$$L'_{n,w} = 55.7 \text{ dB}$$

• Rechenverfahren DIN 4109-2:

Balkon und Glasfassade $K_T = 0$ dB:

$$L'_{n,w} = L_{n,eq,0,w} - \Delta L_w - K_T + u_{prog}$$

Anwendung auf die Baumessung

$$L_{\text{n,eq,0,w}} = 164 - 35 \cdot \lg m' = 68.7 \text{ dB}$$

$$K_{\rm T} = 0 \text{ dB}$$

$$\Delta L_{\rm W} = 11~{\rm dB}$$

$$\mu_{\text{prog}} = 3 \text{ dB}$$

Nachweis:

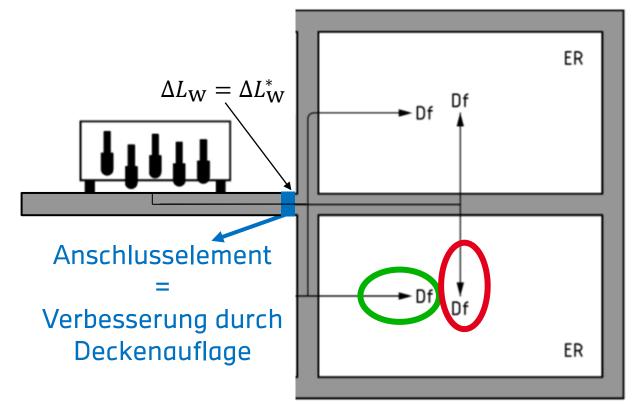
$$L'_{n,w} = (68.7 - 11 - 0 + 3) dB = 60.7 dB$$

$$L'_{
m n,W}$$
(ohne uprog)

$$=$$
 57.7 dB

Messung:

$$L'_{n,w} = 57.7 \text{ dB}$$


DIN EN ISO 12354-2:2017

• bei Laubengängen:

$$\Delta L_{w} = \Delta L_{w}^{*}$$

$$L_{n,ij,w} = L_{n,eq,0,w} - \Delta L_{w} + \frac{R_{i,w} - R_{j,w}}{2} - \Delta R_{j,w} - K_{ij} - 10 \lg \frac{S_{i}}{l_{0}l_{ij}}$$

$$L'_{n,w} = 10 \lg \left(\sum_{j=1}^{n} 10^{0.1 \cdot L_{n,ij,w}} \right)$$

Anwendung auf die Baumessung

$$L_{\text{n,eq,0,w}} = 164 - 35 \cdot \lg(m') = 68.7 \text{ dB}$$

• Übertragung über die Wand

$$\Delta L_{W} = 11 \text{ dB}$$

$$\frac{R_{i,w} - R_{j,w}}{2} = 3 \text{ dB}$$

$$K_{ij} = 9,2 \text{ dB}$$

$$10 \lg \left(\frac{S_{i}}{l_{o}l_{ij}}\right) = 4,5 \text{ dB}$$

$$L_{n,ij,W} = (69.4 - 11 + 3 - 9.2 - 4.5) dB = 46.8dB$$

• Übertragung über die Decke

$$\Delta L_{W} = 11 \text{ dB}$$

$$\frac{R_{i,w} - R_{j,w}}{2} = 0 \text{ dB}$$

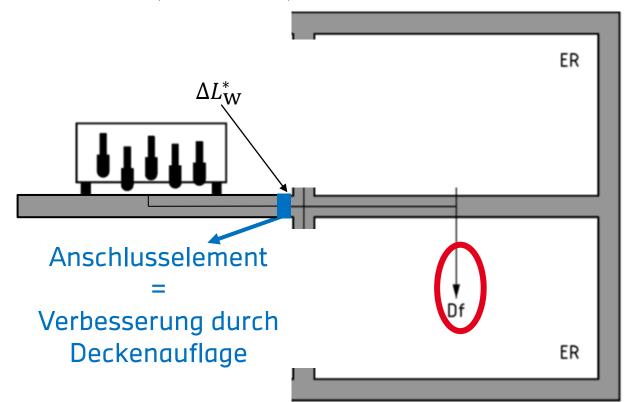
$$K_{ij} = 5.8 \text{ dB}$$

$$10 \lg \left(\frac{S_{i}}{l_{0}l_{ij}}\right) = 7.6 \text{ dB}$$

$$L_{n,ij,w} = (69.4 - 11 - 5.8 - 7.6) dB = 47.3 dB$$

• Gesamte Übertragung

$$L'_{\text{n,w}} = 10 \cdot \lg(10^{4.68} + 10^{4.7,3}) = 50,2 \text{dB}$$


DIN EN ISO 12354-2:2017

• bei Balkonen (Glasfassade):

$$\Delta L_{\rm w} = \Delta L_{\rm W}^*$$

$$L_{\rm n,ij,w} = L_{\rm n,eq,0,w} - \Delta L_{\rm W}^* + \frac{R_{\rm i,w} - R_{\rm j,w}}{2} - \Delta R_{\rm j,w} - K_{\rm ij} - 10 \lg \frac{S_{\rm i}}{l_0 l_{\rm ij}}$$

$$L'_{\rm n,w} = 10 \lg \left(\sum_{j=1}^{n} 10^{0.1 \cdot L_{\rm n,ij,w}} \right)$$

Anwendung auf die Baumessung

• Übertragung über die Fassade

$$L_{\text{n,eq,0,w}} = 164 - 35 \cdot \lg(m') = 68.7 \text{ dB}$$

$$\Delta L_{\rm W} = 11 \text{ dB}$$

$$\frac{R_{\rm i,w} - R_{\rm j,w}}{2} = 0 \text{ dB}$$

$$K_{\rm ij} = K_{\rm ij,min} = -2.8 \text{ dB}$$

$$10 \lg \left(\frac{S_{\rm i}}{l_0 l_{\rm ij}}\right) = 4.5 \text{ dB}$$

$$L_{n,ij,w} = 68.7 \text{ dB} - 11 \text{ dB} + 2.8 \text{ dB} - 4.5 \text{ dB} = 56.0 \text{ dB}$$

Messwert

$$L'_{n,W} = 57.7 \text{ dB}$$

Zusammenfassung: Baumessung

Abstrahlung der Decke bestimmt den Trittschallpegel im Empfangsraum

Außenwand hat nur geringen Einfluss auf den Gesamt-Trittschallpegel

Trittschallminderung ΔL_w nach EAD und am Bau stimmt gut überein

Unterschiede aufgrund unterschiedlicher Abmessungen von Balkon und Decke

Mindestanforderung nach DIN 4109-1 wird ohne Deckenauflage erreicht

Trotz starker Bewehrung

Prognose liefert zufriedenstellende Ergebnisse

Validierung mit weiteren Baumessungen folgt...

- Motivation
- Anforderungen
- Prognoseverfahren
- Prüfverfahren
- Baumessungen
- Ausblick

Ausblick

- Aufnahme des Prüf- und Berechnungsverfahrens in DIN 4109
- CEN Normungsvorhaben zum Prüfverfahren
- Implementierung Prognoseverfahren in Software KS-Rechner

Hochschule für Technik Stuttgart

Neues Prüfverfahren und Berechnung des Trittschallschutzes mit Anschlusselementen für Balkone und Laubengänge

M.Sc. Dipl.-Ing. (FH) Martin Schneider M.Sc. Lucas Heidemann, Dr. Jochen Scheck, Prof. Dr.-Ing. Berndt Zeitler

11.05.2023

Hochschule für Technik Stuttgart

GEFÖRDERT VOM

Hochschule für Technik Stuttgart

Sommerkolloquium Bauphysik 2023

Blower-Door Messungen in der Praxis

Peter Wirsching, M.Sc. GN Bauphysik

Kurze Darstellung des Funktionsprinzips bzw. der aktuellen Regelungen. Zudem werden unterschiedliche Luftdichtigkeitsmessungen, vom saniertem Altbau-Einfamilienhaus bis zum Neubau- Nichtwohngebäude, vorgestellt.

Blower Door Messungen in der Praxis

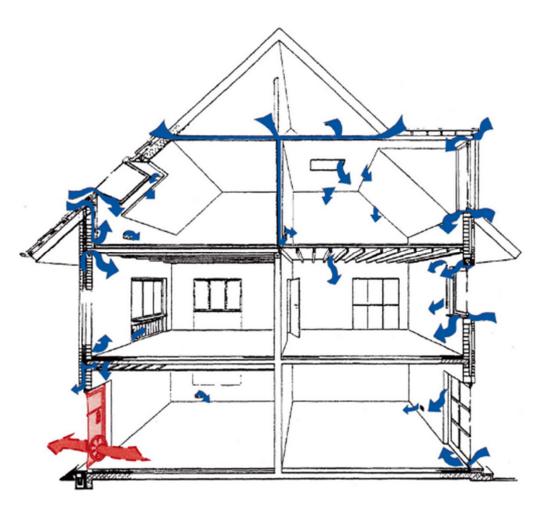
- Darstellung des Funktionsprinzips und der aktuellen Regelungen
- Vorstellung unterschiedlicher Luftdichtigkeitsmessungen

Historisches

Differenzdruck-Messverfahren vs.
Blower-Door Messung

1977:	airtightness measurements in Schweden (window mounted fan)
1977:	identische Messversuche von Caffey in Texas
ca. 1978:	door mounted test fan von Blomsterberg und Persily an der Princeton University
ca. 1978:	Harold Orr macht ähnliche Tests in Kanada
1982:	Die Firma "The Energey Conservatory" in Deutschland bekannt als "Minneapolis" ver- kauft erste Geräte in den USA
1989:	Robert Borsch-Laaks importiert zwei Geräte nach Deutschland
1996:	Normung des Differenzdruckverfahren in der DIN EN ISO 9972:1996
2002:	Verankerung des Messverfahrens in der EnEV
2010:	Verankerung und teilweise Nachweispflicht bei

KfW-Effizienzhäusern


Historisches

Wie funktioniert die Messung?

Quelle: BlowerDoor GmbH

Gebäudepräparationen nach DIN EN ISO 9972:2018:

Sen	la 2 w	on 2			Präparation			Durch Präg	gefi	ion	
Znordnang	Nr.	Zuordnung	Bauteil / Öffnung / Ein	obae esw.	Nach Verfahren 3	nicht vorhanden	abgedichtet	mit Hilfsmittel AB/C/D/E/F	verschlossen	ausposchallet	balan Haftenbers
	25		Außenbauteil-Luftdurchlässe (ALD)* für die freie Lifftung Außenbauteil-Luftdurchlässe (ALD)* als Nachströmöffnung für Ertfüftungsanlagen nach DIM 18017-3 oder Bafül.		Wenn schließbar, dann schließen, sonst keine Maßnahme	0	0		0	a	6
	26	Bauteile der freien Lüftung				9	0		0	q	0
	27	В	Einzelventilatoren			8	8		ō	ā	t
	28		Abluftanlagen rach DIN 1946-6	Abluftdurchlässe/ Abluftleitung	Abdichten bzw. schließen*	8	0		0	9	0
	29			Außenbauteil- Luftdurchlässe (ALD)			0		0	g	Ī
8	30	Bauteile für ventilator	Zuluftventilatoren (z. B. zur Schalldämm- lüftung) zur Belüftung einzelner Räume		Abdichten	9	0	. •	0	a	Ī
T,	31	gestützte Lüftung oder Klimatisierung, die permanent	Zu- und Abluftanlagen zur Wohnungslüftung nach DIN 1946-6 und RLT-Arlagen im Nicht- wohnungsbau, die während der Heizzeit ständig in Betrieb sind	Zuluftdurchlässe/ Zuluftleitung	Abdichten oder Jalousieklappe schließen (RLT-Anlagen)*	8	9		9	8	1
il o	32	betrieben werden ^e		Abluftdurchtässe/ Abluftleitung		0	0		0	d	1
i Bit	33			Außenluftdurchlässe/ Außenluftfeitung		0	0		0	d	Ì
paration voc	34			Fortluftdurchlässe/ Fortluftleitung		0	0		0	a	ı
	35			Lüftungsgerät(e)		ö	Ö		ō	ā	t
E	36			Einzelventilatoren	Wenn schließbar, dann schließen, sonst keine Maßnahme	9	8		9	9	Ī
	37	gestützle Lüftung oder Klimatisierung, die zeitweise genutzt		Abluftdurchlässe/ Abluftleitung		9	0		0		1
	38		RLT-Anlagen im Nichtwohnungsbau Ausschaften		Ausschalten		0		0		Ī
-	39		sonstige Anlagen mit Vertrilatoren, die während der Heizzeit nicht ununterbrochen im Betrieb sind		0	0		0	d	1	
	Dazu Zillem auch in der Fensterlage mostlerte Fensterlachtliter. *Soweit die jeweitige technische Einschrang (z. B. R.T. Wichtungsprüftungspränger, Versitätor) zum Messenlipsräd noch nicht einsphalte (d. wird der Einsphalter) die volle der Versichten (d. w. der die Versichten (d. R. d.										
Hilfsmitte	A: Klebeband - B: Folle und Klebeband - C: Ballblaso/Stopfen - D: Außenfult- und Abhuftfiller im Liftungsgerät in Folle eingepackt E: F:										
Anmerkung	Solded in 7, or * verachisesse ein Olivany mit der an der Olivany verhandenn Schleberschausg nie geschlessen Schlags Honge, den der Lathdechter der Olivany practicitin zu erhalben. Falls seiner Schleberschausg verhanden at, beloch Olivany unverlandet. Nichten drauf in gelichte Andelsen A. Anbeben Olivansprache einer der uns angemessenen Hilleminist (Debehand, Baltikane, Soughen sowi). Systemyman P. Halffläche, der emergischen Bernchmung zugrunds gelangt werde 1. wärmerlicherungsvollt belossungstätliche Generativen werden Köllscherweise soll ALT Kalagen in der Prinziprennengebeschaftsenschungs beständigte.										
	Zeitweise ↑ bestimmungsgemäß nicht permanenter Betrieb während der Heizperiode										
	BaRL Bauaufsichtliche Richtlinie zur Lüftung fensterloser Küchen, Bäder und Tolletten						nom	der zu	ni ole	setz	ä

Quelle: Fachverband Luftdichtheit im Bauwesen e.V.

Messgrößen und Grenzwerte

Luftwechselrate n₅₀ maßgebend für Gebäude bis 1.500 m³

$$n_{50} = \frac{V_{50}}{V}$$
 Grenzwert: mit Lüftungsanlage 1,5 h⁻¹ ohne Lüftungsanlage 3,0 h⁻¹

Luftdurchlässigkeit q₅₀ maßgebend für Gebäude ab 1.500 m³

$$q_{50} = \frac{V_{50}}{A_E}$$
 Grenzwert: mit Lüftungsanlage 2,5 h⁻¹ ohne Lüftungsanlage 4,5 h⁻¹

Rückschluss auf natürlichen Luftwechsel

Ergebnisauswertung der Gebäude:

- Der Mittelwert mittels Blower-Door ermittelter n₅₀-Werte liegt bei 7,4 1/h
- Der Mittelwert der gemessenen natürlichen Luftwechselwerte liegt bei 0,26 1/h

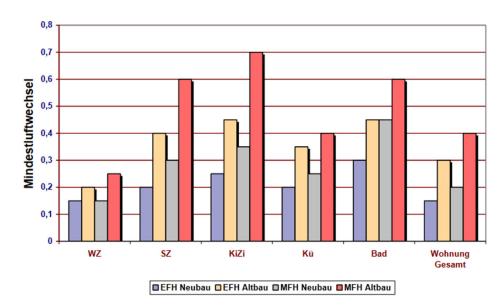


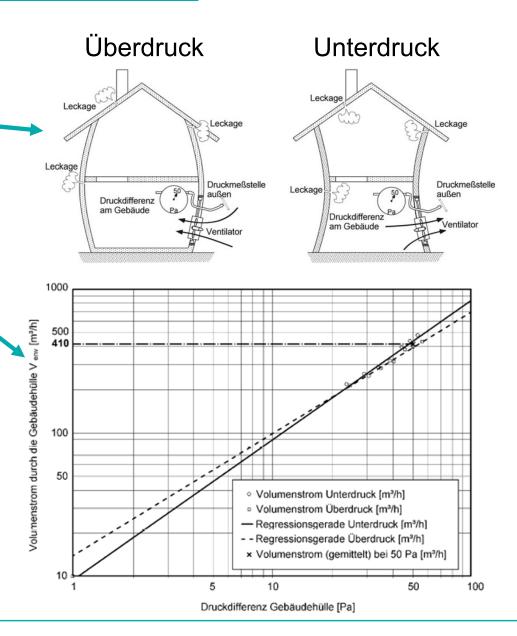
Abbildung 8: Angaben zum Mindestluftwechsel⁸

Quelle: Verband der Bausachverständigen "Luftwechsel im Gebäudebestand"

Vergleicht man die Luftwechselraten der untersuchten Wohnungen (AnBUS-Studie⁴) mit dem von der TU Dresden angesetzten Mindestluftwechsel, erreichen 15 % der Wohnungen diese Anforderung, auch ohne weitere Fensterlüftung durch die Nutzer.

Messvorschriften

- Die EnEV bezog sich auf Vorgaben der DIN EN 13829:2001.
- Das GEG bezieht sich auf Vorgaben der DIN EN ISO 9972:2018.
- Nachfolgend eine Kurzübersicht der BlowerDoor GmbH.


	Abnahmemessungen für den öffentlich-rechtlichen Nachweis nach Energieeinsparverordnung mit DIN EN 13829:2001-02	Abnahmemessungen für den öffentlich-rechtlichen Nachweis nach Gebäudeenergiegesetz mit DIN EN ISO 9972:2018-12		
Gültigkeit	Bauantrag vor 1.11.2020	Bauantrag nach 1.11.2020		
Messgenauigkeit	Alle BlowerDoor MessSysteme erfüllen die Anforderungen	Alle BlowerDoor MessSysteme mit digitalen Druckmessgeräten erfüllen die Anforderungen		
Software	• TECTITE Express • TECLOG MultipleFan	• TECTITE Express 5.1 • BlowerDoor Report • TECLOG MultipleFan 4 • App TEC AutoTest		
Zeitpunkt	Abnahmemessungen an fertiggestellten Gebäuden	Abnahmemessungen an luftdichter Gebäudehülle inkl. aller Durchdringungen		
Provisorische Abdichtungen Checklisten siehe BlowerDoor KompetenzCenter >	Nach EnEV und DIN EN 13829 Abschnitt 5.2.2: "Für Verfahren B werden alle einstellbaren Öffnungen geschlossen, und alle absicht- lich vorhandenen Öffnungen abgedichtet" (Prüfung der Gebäudehülle)	Nach GEG und DIN EN ISO 9972:2018-12 NA.5.1: "Für Verfahren 3 werden die in den Tabellen NA.1 bis NA.3 Festlegungen getroffen." = nationale Festlegungen, ähnlich Verfahren A (Prüfung im Nutzungszustand)		
i Bezeichnungen	 Leckagestrom V₅₀ Luftwechselrate n₅₀ Luftdurchlässigkeit q₅₀ 	 Leckagestrom q₅o Luftwechselrate n_{Lso} Luftdurchlässigkeit q₅₅o 		
Luftdurchlässigkeit der Gebäudehüll- fläche q₅o/qε₅o	Verpflichtend ab 1.500 m³ Gebäudeluftvolumen für Nichtwohngebäude Bei Berechnung nach DIN V 18599 auch für Wohngebäude ab 1.500 m³ Gebäudeluftvolumen	Immer verpflichtend ab 1.500 m³ Gebäudeluftvolumen Quelle: BlowerDoor GmbH Infoblatt		
Hinweis: Die Luftwechselrate n ₅₀ /n _{L50} muss dennoch im Prüfbericht angegeben werden!				

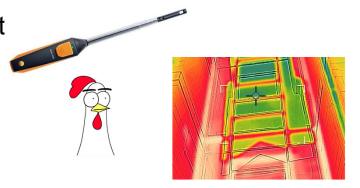
Messvorschriften

Quelle: BlowerDoor GmbH Infoblatt

Leckagensuche

Keine seriöse Messung ohne Leckageortung!!

Fühlen von Luftströmen mit der Hand



Leckageortung durch Visualisierung mit Nebel

Leckageortung mittels Luftgeschwindigkeitsmessgerät

Visualisierung von Leckagen mittels Thermographie

Warum eine Blower Door Messung?

- Qualitätssicherung während Bauphase
- Abschlussmessung am Ende des Bauprozesses
- Vor Ablauf der Gewährleistung
- Im Bestandsgebäude zur Schadensanalyse
- Im Bestand vor / nach Sanierung
- Zerstörungsfreie Möglichkeit der Qualitätssicherung

Messzeitpunkt?

Voraussetzungen am Gebäude

- Innenwände verputzt
- Estrich eingebracht
- Fenster eingestellt
- Keller- und Hauseingangstüren eingebaut
- Zugang aufs Dach, um die Aufzugsschachtentrauchung sowie
 Strangentlüftung zentral auf dem Dach abkleben zu können
- An der thermischen Gebäudehülle alle Wand- und Deckendurchdringungen für Installationen verschließen
- Abwasserleitungen mittels Stopfen oder Klebeband luftdicht verschlossen
- Bei Holzbauweise (z.B. Sparrendach) mit Dampfsperre: Sichern der Dampfsperre durch Holzlattung, damit diese nicht durch den für die Messung erzeugten Luftdruck gelöst wird
- Rechtzeitiges Ankündigen des Messtermins bei den Handwerkern, so dass während des Zeitraums der Messung alle Fenster und Außentüren konstant geschlossen bleiben

Die luftdichte Ebene ist noch sichtbar und zugänglich (Folie und Holzbauplatte): Der optimale Zeitpunkt für eine BlowerDoor Messung.

Quelle: BlowerDoor GmbH Infoblatt

Vorteile durch Blower-Door Messung

- Verbesserter Wärmeschutz (Energieeinsparung)
- Erhöhter Feuchteschutz
- Erhöhter Schallschutz
- Verbesserter Brandschutz
- Planmäßiger Betrieb von Lüftungsanlagen / Kontrollierte Lüftung
- Gesteigerte Behaglichkeit
- Reduzierung der Schadstoffbelastung
- Einhaltung der Nachweise durch Verordnungen (GEG, BEG)

Vorschriften zur Durchführung

GEG §26: Prüfung der Dichtheit eines Gebäudes

BEG:

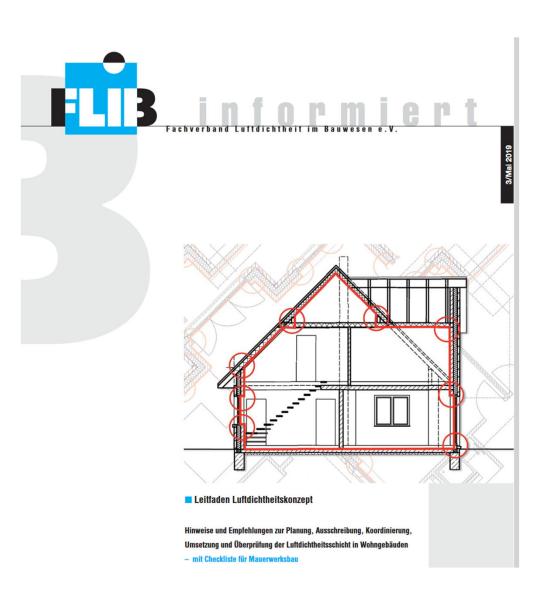
Bei WG ist zur Erreichen des Effizienzhausstandard ein **Luftdichtheitskonzept** notwendig (nicht beim NWG)

Soll die Wärmerückgewinnung im WG in Bilanzierung angerechnet werden oder ein reduzierter Luftwechsel, dann **BD-Messung** vorgeschrieben (vereinfachte Werte bei Sanierung zum Effizienzhaus)

NWG darf Wärmerückgewinnung ohne BD-Messung angesetzt werden, für reduzierten Luftwechsel allerdings nur mit **BD-Messung**

DGNB

Rechnung Energieeinsparung raus!


Fiktives Haus 10 x 10 x 5 Meter T _{ex} = -10°C und T _{in} = 20°C	Transmissionswärme- verluste durch Hülle [W]	Lüftungswärme- verluste [Wh]
Wohngebäude neu: $H_T^* = 0.3 \text{ W/m}^2\text{K}$ und n = 0.2 1/h	3.600	1.120
Wohngebäude alt: $H_T = 1,3 \text{ W/m}^2\text{K}$ und $n = 0,4 \text{ 1/h}$	15.600	2.240
Bürogebäude neu: $H_T = 0.3 \text{ W/m}^2\text{K}$ und n = 4 1/h	3.600	22.400 (WRG!)

Umso besser gedämmt, desto relevanter Lüftungswärmeverluste!

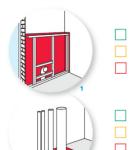
Hilfreiche Unterlagen

Checkliste Luftdichtheit für Mauerwerksbau

Die Checkliste zeigt beispielhafte Prinzipskizzen und dient als Hilfestellung bei der Sichtprüfung der Ausführung des vereinbarten Luftdichtheitskonzepts. Sie ist nicht vollständig und stellt kein Abnahmeprotokoll dar.

Außenwände: Innenputz

- Mauerwerk vollflächig verputzt
- Mauerkronen der Außenwände verputzt (z. B. bei Hochlochziegeln)


Wände: Elektroleitungen

- Gerätedosen in Außenwänden entweder vollflächig in Putz eingebettet oder als luftdichte Dose ausgeführt – siehe Grafik
- Leerrohre und Kabelkanäle an den Enden luftdicht verschlossen (z. B. durch geeignete Stopfen)
- Elektroleitungen luftdicht an das Rohr/den Kanal angeschlossen

Kamin

- Kamin allseitig verputzt und Außenwand hinter dem Kamin verputzt oder
- Verputzung des Kamins im zugänglichen Bereich und Anbindung an die luftdichte Ebene der angrenzenden Bauteile – siehe Grafik

Vorwandinstallationen und Installationsschächte

- Dahinter befindliches Mauerwerk vollflächig verputzt
 siehe Grafik 1
- Schächte und Durchbrüche zum Keller und Spitzboden luftdicht verschlossen – siehe Grafik 2

Checkliste anwenden

Grün: Der Bauherr kann selbst beurteilen, dass das Detail nach den vereinbarten Vorgaben ausgeführt wurde.

Gelb: Der Bauherr ist unsicher, ob das Detail nach den vereinbarten Vorgaben ausgeführt wurde. Eine zusätzliche Beurteilung durch den Sachverständigen ist notwendig.

Rot: Der Bauherr kann selbst beurteilen, dass das Detail nicht nach den vereinbarten Vorgaben ausgeführt wurde. Die Ausführung ist zu korrigieren.

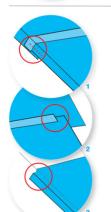
Quelle: Fachverband Luftdichtheit im Bauwesen e.V. (FLiB)

Hilfreiche Unterlagen

Fenster und Türen allgemein

- Luftdichter Anschluss erfolgt an verputzte Fläche siehe Grafik
- Bei Verwendung von luftdichten, vorkomprimierten Dichtbändern ("Kompribänder"): gesamte Laibung mit Glattstrich verputzt
- Brüstungsbereich mit Glattstrich versehen

HINWEIS: Bei "Kompribändern" auf die Bandgrößen entsprechend den Fugenbreiten achten. Die Bänder müssen in den Ecken aneinanderstoßen.



Zusätzlich bei Türen und bodentiefen Fenstern

Schwellenbereich luftdicht an den Rohfußboden angebunden – siehe Grafik

HINWEIS: In der Sanierung ist dafür ggf. der Bodenaufbau zurückzuschneiden.

 Vorhandene Montagewinkel vollständig mit luftdichtem Anschlussmaterial überdeckt

Dachstuhl: luftdichte Schicht innen

Fläche:

- Spannungsfreie Verlegung
- Keine Last von Dämmmaterial auf Klebeverbindung
- Verklebung der Dichtbahnen faltenfrei
- Überlappungsbereich der Folien am Wandanschluss:
- Folien miteinander verklebt siehe Grafik 1
- Luftdichtheitsbahnen überlappen
- Klebeband mittig auf Folienstoß aufgeklebt siehe Grafik 2

Anbindung ans Mauerwerk

- Spannungsfrei (ggf. Entlastungsschlaufe siehe Grafik 3)
- Durchgängige Verklebung auf Putz oder eingeputzt
- Durchgängige Verklebung auch in den Eckbereichen

Dachflächen- und Gaubenfenster

 Luftdichtheitsbahn spannungs- und lastfrei am Blendrahmen des Dachfensters angebunden – siehe Grafik

Rohbausituation bei Fensteröffnung mit aufgebrachtem Glattstrich

Rohrdurchführungen

HINWEIS: ausreichend Platz für Anbindung an die luftdichte Ebene vorsehen (mind. Handbreite)

- · Rohre einzeln durchgeführt
- Im Durchdringungsbereich glattwandiges Rohr verwendet

HINWEIS: Manschetten erleichtern die Ausführung. - siehe Grafik

Rohre von Antennenmasten innenseitig verschlossen

Leitungsdurchführungen

Leitungen einzeln durchgeführt und abgedichtet

HINWEIS: Manschetten erleichtern die Ausführung - siehe Grafik

- · Leerrohre an den Enden abgedichtet
- Elektroleitungen luftdicht an das Rohr/den Kanal angeschlossen

Dachstuhl: konstruktionsbedingte *Durchdringungen* (z. B. Kehlbalken)

- Umlaufend luftdicht angeschlossen siehe Grafik
- Luftdichtheitsbahn spannungs- und lastfrei an Durchdringung angebunden
- Große Risse in Balken ausgefüllt

Innenwände im Dachgeschoss

- Luftdichte Ebene ist über die Innenwand geführt siehe Grafik
 oder
- luftdichte Ebene ist auf der verputzten Wand angeschlossen (Voraussetzung: Mauerabschnitt über der luftdichten Ebene inkl. der Mauerkrone verputzt, z. B. bei Hochlochziegeln)

Wichtige Hinweise:

- Türen (auch Brandschutztüren) zu unbeheizten Bereichen, wie Keller, Garage, Heizraum, Holzlagerraum, sollten allseitig umlaufend eine Dichtung aufweisen.
- Für Einbauten in GK-Decken, wie z. B. Deckeneinbaustrahler, ist aufgrund der Wärmeentwicklung ein ausreichender Abstand zu hitzeempfindlichen Materialien der Luftdichtheitsebene vorzusehen.
- Bei technischen Einbauten, wie Dunstabzugshaube, Trockner, Feuerstätte, Rauch- und Wärmeabzug etc., ist bei der Auswahl auf eine zum energetischen Konzept passende Ausführung zu achten.

Quelle: Fachverband Luftdichtheit im Bauwesen e.V. (FLiB)

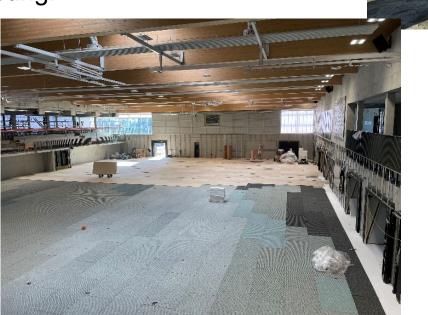
Leckagefläche

Faustformel zur Umrechnung:

Leckagestrom bei 50 Pa [m³/h]

Leckagefläche [cm²]

 $10.000 \text{ cm}^2 = 1 \text{ m}^2$ $600 \text{ cm}^2 = \text{DIN -A4- Blatt}$



Beheiztes Volumen: 21.400 m³

Halle mit Tribünen für Handball Bundesliga Nutzung

Grund für BD Messung:

Anforderung Klimaneutralität

Messung im April 2023 mit 3 Ventilatoren

Überprüfung der Oberlichter

Messprogramm TECLOG

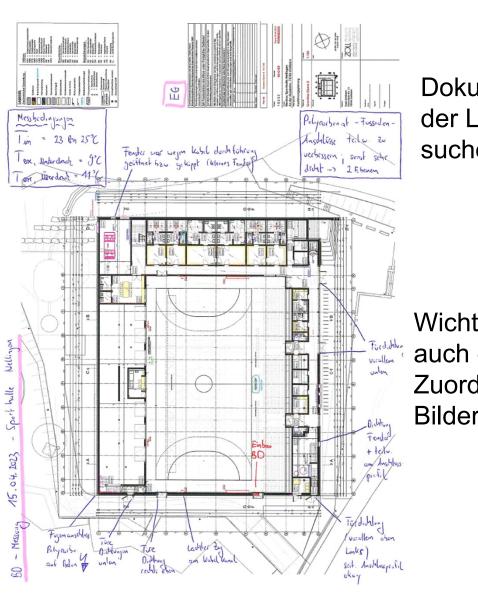
- Vorab Ortstermin mit Besprechung der relevanten Präparationsmaßnahmen
- Vorab-Mail

Sehr geehrte Frau

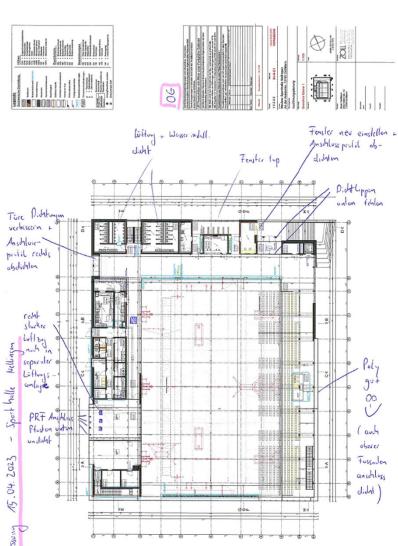
in Anlehnung an unsere gemeinsame Vorbegehung für die Blower-Door Messung der Sporthalle in Nellingen erhalten Sie anbei eine kleine Checkliste der Gebäudepräparationen die vorgenommen werden müssen, bevor die Messung stattfinden kann.

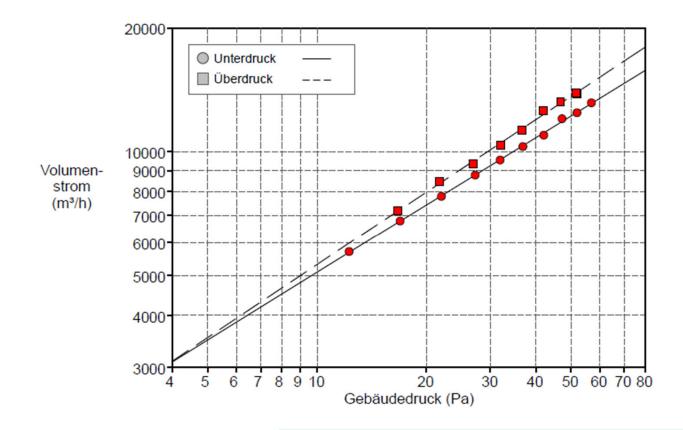
Zu den Gebäudepräparationen gehören:

- Sämtliche Lüftungsanlagen müssen luftdicht verschlossen werden (Brandschutzklappen schließen). Bei Lüftungsanlagen ohne Brandschutzklappen (Sanitärräume?), welche nicht mit der RLT Anlage gekoppelt sind müssen ebenfalls luftdicht verschlossen werden. Hierbei empfiehlt sich das Abkleben der Stranglüftung zentral auf dem Dach. Prinzipiell darf kein Luftaustausch zwischen innen und außen bei den Lüftungsanlagen stattfinden.
- Sämtliche Siphons müssen gefüllt sein. Falls die Vorrichtung noch nicht eingebaut ist, muss das Abflussrohr mit einem Stopfen oder mittels Klebebandes luftdicht verschlossen werden.
- Noch nicht abgeschottete Durchdringungen auf dem Dach müssen abgedichtet werden. Auf den folgenden Bildern empfiehlt sich z.B. das dichte ausstopfen mit Mineralwolle und das zusätzliche Abklehen mit Klebehand.

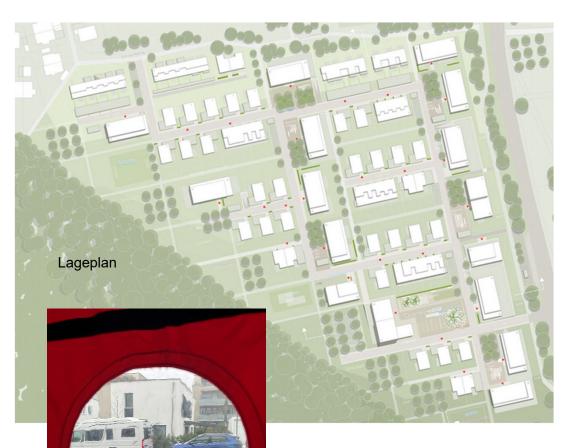

• Der Fassadenanschluss (Situation im Obergeschoss an der Ecke) muss luftdicht verschlossen sein

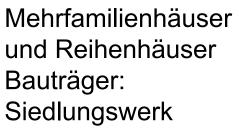
Sämtliche Türen und Fenster müssen während der Messung geschlossen sein und geschlossen gehalten werden. Eventuelle Kabeldurchführungen sind zu entfernen.




Dokumentation der Leckagensuche

Wichtig ist hier auch eindeutige Zuordnung der Bilder vor Ort




ı	Messergebnisse bei 50 Pascal:	<u>Unterdruck</u>	<u>Uberdruck</u>	<u>Mittelwerte</u>
	q ₅₀ : m³/h (Leckagestrom)	12210 (+/- 0.8 %)	13639 (+/- 1.4 %)	12925
	n ₅₀ : 1/h (Luftwechselrate)	0.57	0.64	0.60
	qF50: m³/(h·m² Nettogrundfläche)	3.30	3.69	3.50
	qE50: m³/(h·m² Gebäudehüllfläche)	1.60	1.79	1.70

Voraussetzungen Wetterbedingungen:

nach: DIN EN 13829:2001-02

5.1.4 Wetterbedingungen

Es ist unwahrscheinlich, dass eine zufriedenstellende natürliche Druckdifferenz erreicht wird, wenn das Produkt aus der Temperaturdifferenz zwischen innen und außen in K und der Höhe der Gebäudehülle in K größer ist als $500 \, \text{m} \cdot \text{K}$ (siehe 5.3.3).

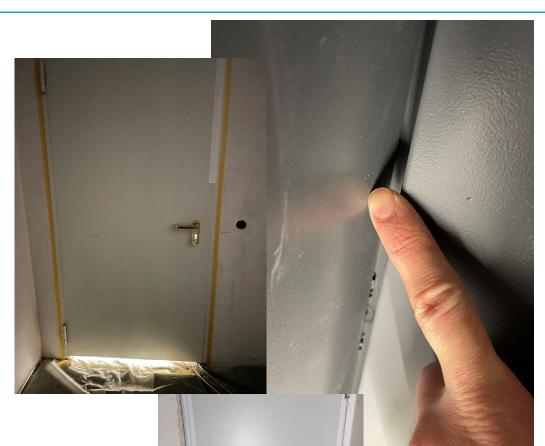
Wenn die meteorologische Windgeschwindigkeit 6 m/s oder Windstärke 3 nach Beaufort übersteigt, ist es unwahrscheinlich, dass eine zufriedenstellende natürliche Druckdifferenz erreicht wird (siehe 5.3.3).

nach: DIN EN ISO 9972:2018-12

ANMERKUNG 2 Wenn das Produkt aus der Differenz der Temperatur der Innenluft und der Temperatur der Außenluft, angegeben in Kelvin, multipliziert mit der Höhe, angegeben in Meter, des Gebäudes oder des gemessenen Gebäudeteiles ein Ergebnis größer als 250 mK ergibt, ist es unwahrscheinlich, dass man eine zufriedenstellende natürliche Druckdifferenz erhält (siehe 5.3.3).

ANMERKUNG 3 Wenn die Windgeschwindigkeit in Bodennähe 3 m/s oder die meteorologische Windgeschwindigkeit 6 m/s übersteigt oder wenn die Windstärke nach Beaufort 3 erreicht, ist es unwahrscheinlich, dass man eine zufriedenstellende natürliche Druckdifferenz erhält (siehe 5.3.3) N1).

Mücahit in seinem Element


Präparationen I

Präparationen II

Kellertüren

> Aufzugsschachtentrauchung

Präparationen III

Rohr / Kabel(schacht)-Durchdringungen

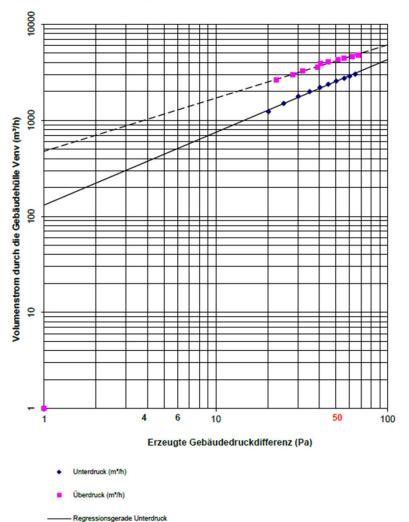
Zugänglichkeit

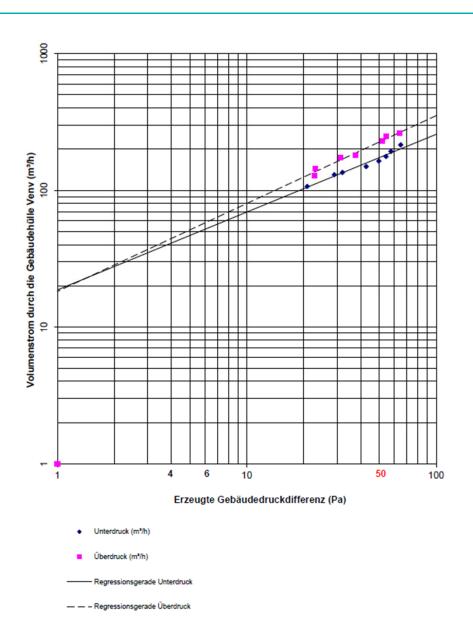
Baustellentüren

Kein Zugang während Messung!

Schutzfolien

Variable Leckagen




Messergebnisse

Mittelung Über- und Unterdruck $q_{50} = 2,0 \text{ 1/h}$ Grenzwert hier: 4,5 1/h

(informativ: n50 = 1,2 1/h)

— – Regressionsgerade Überdruck

Tipps für stürmisches Wetter:

- Messung verschieben
- Günstiges Wetterfenster mit Wetterbericht finden
- Ist das Gebäude windanfällig (steht es frei oder geschützt?)
- Einbausituation im Luv (windabgeneigt) wählen
- Mehr Messpunkte pro Druckstufe (z.B. 200) wählen
- Drehzahl Ventilator händisch steuern
- Software wechseln (z.B. auf Teclog anstatt Tectite)

nach: DIN EN 13829:2001-02

5.3.4 Differenzdruck-Messreihe

Die Luftfördereinrichtung wird wieder geöffnet und eingeschaltet.

Die Messung wird durchgeführt, indem über einen Bereich der erzeugten Druckdifferenz in Schritten von nicht mehr als 10 Pa Messpunkte des Volumenstroms und der Druckdifferenz zwischen innen und außen aufgenommen werden. Die kleinste Druckdifferenz muss 10 Pa bzw. 5mal der Betrag der natürlichen Druckdifferenz (größerer der Beträge des positiven und negativen Mittelwertes) sein, je nachdem, welcher Wert größer ist. Die größte angelegte Druckdifferenz kann entsprechend a) und b) von der Größe des Gebäudes abhängen:

- a) Einfamilienhaus und andere kleine Gebäude
 - Die größte Druckdifferenz muss mindestens 50 Pa betragen, aber es wird empfohlen, dass Messpunkte bis hinauf zu $\pm\,100$ Pa genommen werden, um höchste Genauigkeit der berechneten Ergebnisse zu erhalten.
- b) Große Gebäude (größer als ein Volumen von etwa 4 000 m³)

Wenn möglich, muss die höchste Druckdifferenz die gleiche sein wie bei Einfamilienhäusern [siehe a)]. Weil jedoch viele Nicht-Wohngebäude sehr groß sind und wegen praktischer Grenzen der Kapazität von transportierbaren Luftfördereinrichtungen. mit denen solche Gebäude geprüft werden, stellt sich oft heraus, dass eine Druckdifferenz von 50 Pa nicht erreicht werden kann. In diesen Fällen sollten zusätzliche Luftfördereinrichtungen eingesetzt werden (um die Gesamtkapazität zu erhöhen) und/oder die Messung kann nur bis zu der höchsten Druckdifferenz durchgeführt werden, die mit der verfügbaren Luftförderausrüstung erreicht werden kann. In solchen Fällen ist die Messung ungültig, es sei denn, es wird eine Druckdifferenz von mindestens 25 Pa erreicht. In den Fällen, in denen die höchste Druckdifferenz zwischen 25 Pa und 50 Pa beträgt, muss dies im Messbericht deutlich vermerkt werden, mit der Feststellung, dass die Anforderungen der vorliegenden Norm nicht ganz erfüllt wurden und mit einer Begründung dafür.

Es sollten zwei Messreihen aufgenommen werden, eine bei Über- und eine bei Unterdruck. Um die Anforderungen der vorliegenden Norm zu erfüllen, ist es jedoch auch zulässig, nur eine Messreihe bei Über- oder Unterdruck zu erstellen. Für jede Messreihe müssen mindestens 5 Messpunkte in ungefähr gleichen Abständen zwischen der größten und der kleinsten Druckdifferenz aufgenommen werden.

ANMERKUNG 1 Daten bei höherer Druckdifferenz sind genauer als solche bei geringerer. Deshalb sollte bei Messungen bei kleinen Druckdifferenzen besondere Sorgfalt walten.

ANMERKUNG 2 Es ist ratsam zu überprüfen, ob sich der Zustand der Gebäudehülle während der Messung nicht geändert hat, und dass beispielsweise abgedichtete Öffnungen nicht undicht wurden oder Türen, Fenster oder Luftdurchlässe durch den erzeugten Druck aufgedrückt wurden.

nach: DIN EN ISO 9972:2018-12

5.3.4 Differenzdruck-Messreihe

Die Abdeckung ist von der Luftfördereinrichtung abzunehmen und die Einrichtung ist einzuschalten.

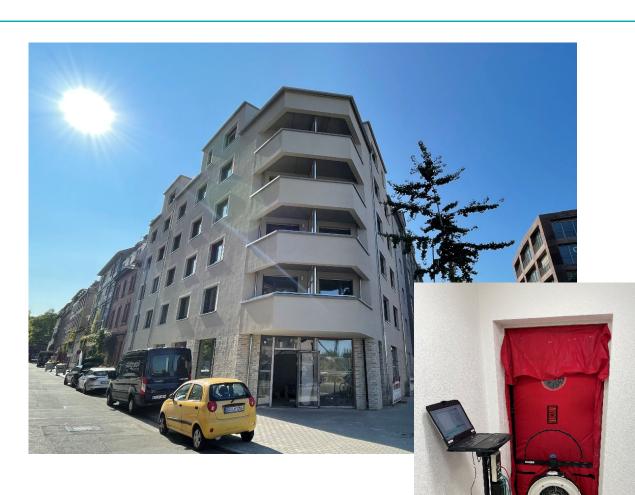
Die Prüfung wird vorgenommen, indem über einen Bereich der erzeugten Druckdifferenzen in Schritten von nicht mehr als etwa 10 Pa Messungen des Volumenstroms und der Druckdifferenz zwischen innen und außen durchgeführt werden. Für jede Prüfung sind mindestens fünf etwa gleich weit voneinander entfernte Datenpunkte zwischen der kleinsten und der größten Druckdifferenz zu definieren.

Die kleinste Druckdifferenz muss etwa 10 Pa (d. h. mit einer zulässigen Abweichung von ± 3 Pa) oder das Fünffache des Wertes der natürlichen Druckdifferenz (Δp_{01}) betragen, je nachdem, welcher Wert höher ist.

Die höchste Druckdifferenz muss mindestens 50 Pa betragen; um die höchste Genauigkeit der berechneten Ergebnisse zu erhalten, wird jedoch empfohlen, Ablesungen bei Druckdifferenzen bis hinauf zu 100 Pa vorzunehmen.

Weil jedoch viele Nicht-Wohngebäude sehr groß sind und aufgrund der praktischen Grenzen der Kapazität transportierbarer Luftfördereinrichtungen, mit denen derartige Gebäude geprüft werden, ist eine Druckdifferenz von 50 Pa möglicherweise nicht erreichbar. In diesen Fällen sollten entweder zusätzliche Luftfördereinrichtungen oder solche mit einer höheren Kapazität eingesetzt werden (um die Gesamtkapazität zu erhöhen) und/oder die Prüfung darf bis zu der höchsten Druckdifferenz durchgeführt werden, die mit der verfügbaren Luftförderausrüstung erreichbar ist. In diesen Fällen ist die Prüfung ungültig, außer es kann

eine Druckdifferenz von 25 Pa erzielt werden. In den Fällen, in denen die höchste Druckdifferenz zwischen 25 Pa und 50 Pa beträgt, ist das im Prüfbericht deutlich zu vermerken, mit der Feststellung, dass die Anforderungen der vorliegenden Internationalen Norm nicht vollständig erfüllt wurden, sowie mit der entsprechenden Begründung. Eine alternative Lösung besteht darin, große Gebäude zu messen, indem sie in mehrere kleinere Teile untergliedert werden.


Es wird empfohlen, zwei Messreihen durchzuführen: eine bei Über- und eine bei Unterdruck. Um die Anforderungen der vorliegenden Internationalen Norm noch zu erfüllen, ist es jedoch auch zulässig, nur eine Messreihe bei entweder Über- oder Unterdruck zu erstellen.

ANMERKUNG 1 Daten bei höheren Druckdifferenzen sind genauer als solche bei geringeren. Deshalb ist es wichtig, im Falle von Messungen bei geringen Druckdifferenzen besonders sorgfältig vorzugehen.

ANMERKUNG 2 Es ist ratsam zu überprüfen, dass sich der Zustand der Gebäudehülle während der Prüfung nicht geändert hat, z.B. dass abgedichtete Öffnungen nicht undicht geworden sind oder Türen, Fenster oder Luftklappen durch den erzeugten Druck nicht aufgedrückt wurden.

MFH Mannheim

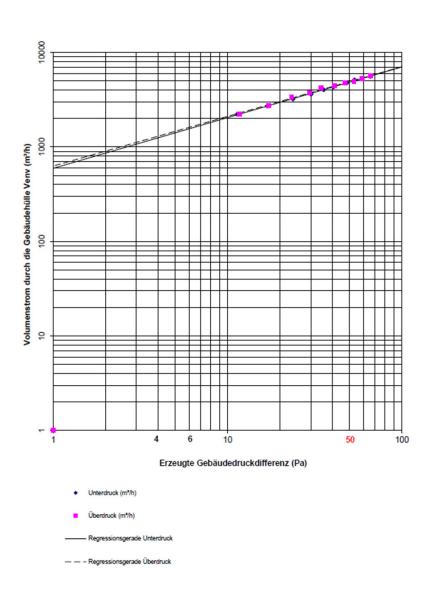
Frank am abkleben

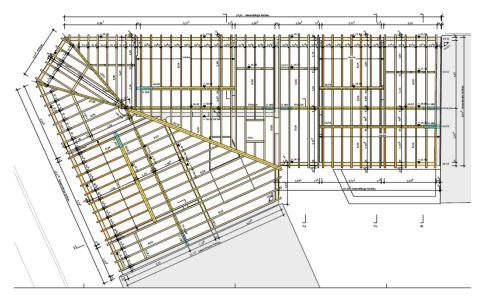
Beheiztes Volumen: Knapp 5.000 m³

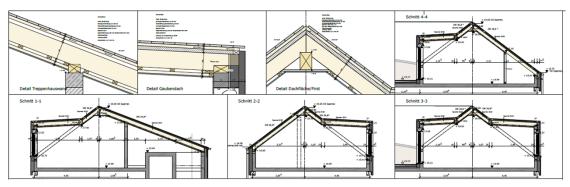
MFH mit Gewerbe im EG

Grund für BD Messung: KfW-55 Neubau

MFH Mannheim



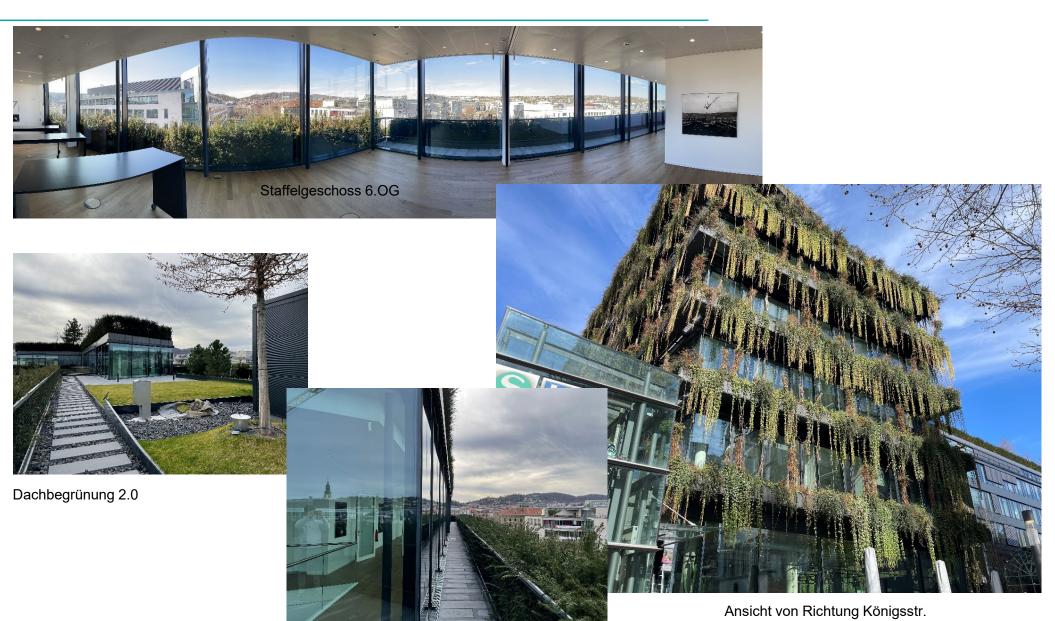



MFH Mannheim

Steildächer sind genau zu untersuchen

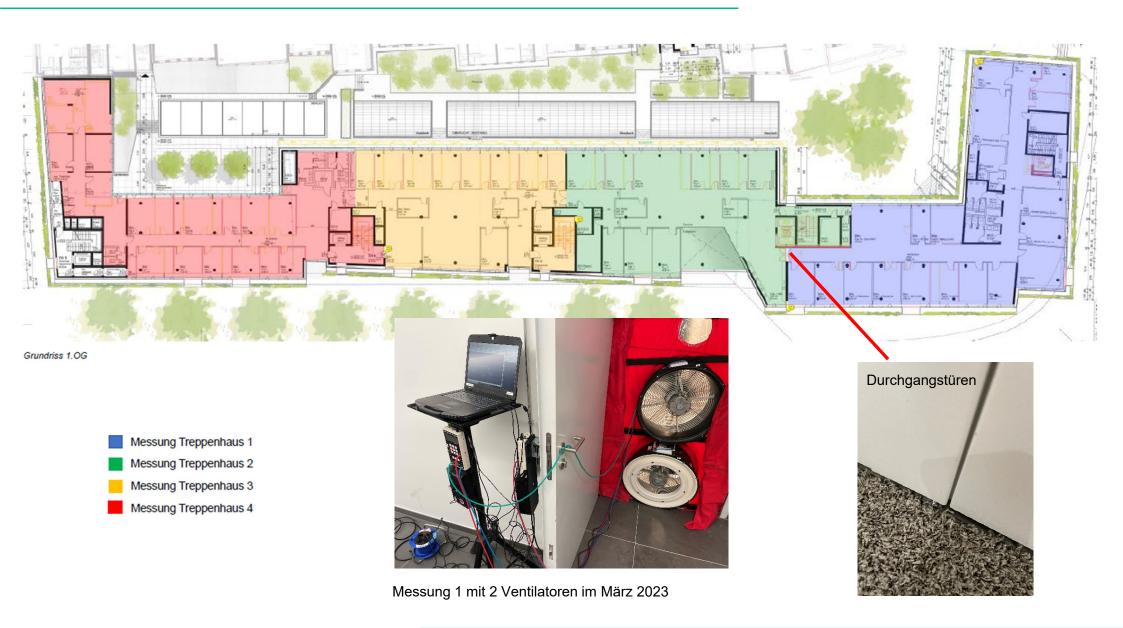
Calwer Passage Stuttgart

Gebäudenutzfläche NWG-Teil: 15.800 m²


Beheiztes Volumen 53.800 m³

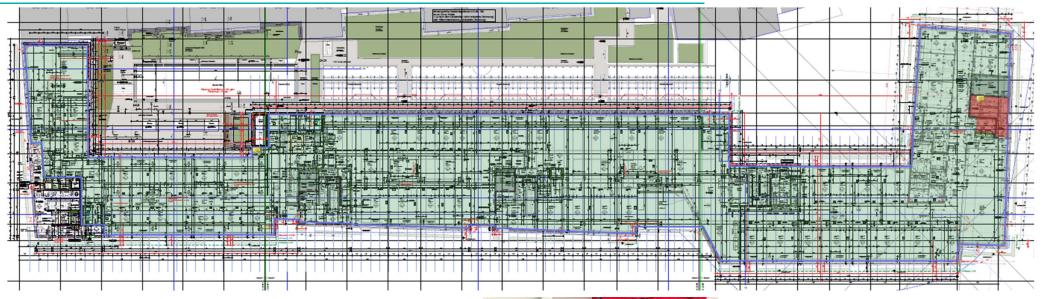
9 Geschosse inkl. 2 UGs

Quelle: fotodesignkilianbishop


Calwer Passage Stuttgart

Calwer Passage Stuttgart - Messung 1

Calwer Passage Stuttgart - Messung 1



Dachbegrünung 2.0

Anlagentechnik auf Hauptdach

Calwer Passage Stuttgart - Messung 2

Messung 2 mit 5 Ventilatoren im Mai 2023

Zusammenfassung

- Präparationen genau vorab besprechen (ggf. Vorab-Termin)
- Exakte Absprache bezüglich der Messrandbedingungen (Strom, Parksituation, Handwerker vor Ort etc.)
- Saubere Dokumentation der Leckagen bereits auf Baustelle wichtig
- Zeit für Leckagensuche einplanen
- Wetter ernst nehmen (Kälte, Wind)
- Je nach baulicher Situation Vorabmessung in Erwägung ziehen (Holzbau / Steildach)
- Messdurchführung nach GEG strenger (Überdruckmessung sollte nicht unterschätzt werden)
- Umso besser Dämmstandard, desto relevanter die Infiltrationsverluste

Danksagung

Bei Rückfragen stehe ich Euch/Ihnen gerne zur Verfügung

Peter Wirsching, M.Sc.

GN Bauphysik Ingenieurgesellschaft mbH Telefon: 0711/95488025

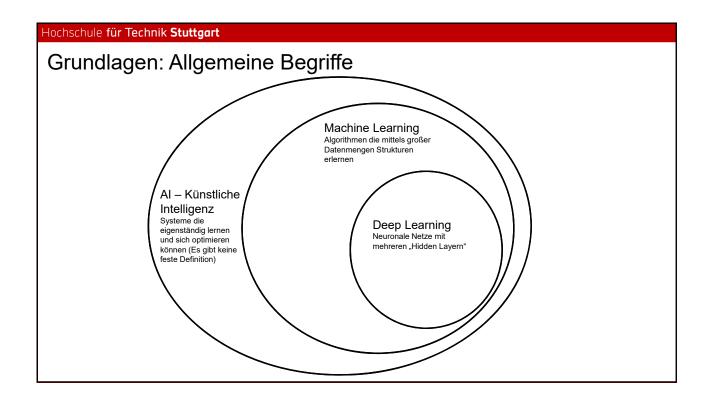
Mail: peter.wirsching@gn-bauphysik.com

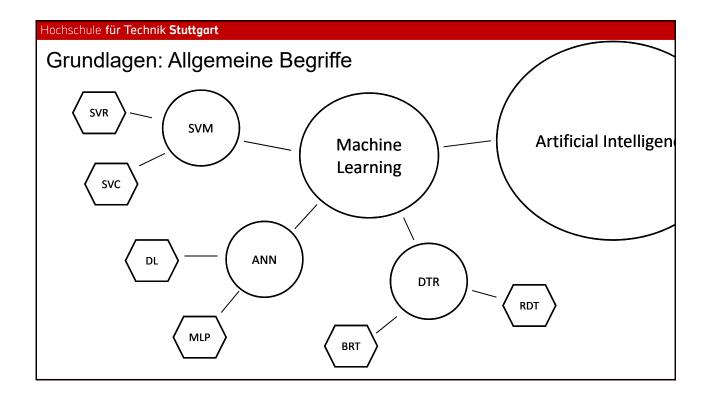
Hochschule für Technik Stuttgart

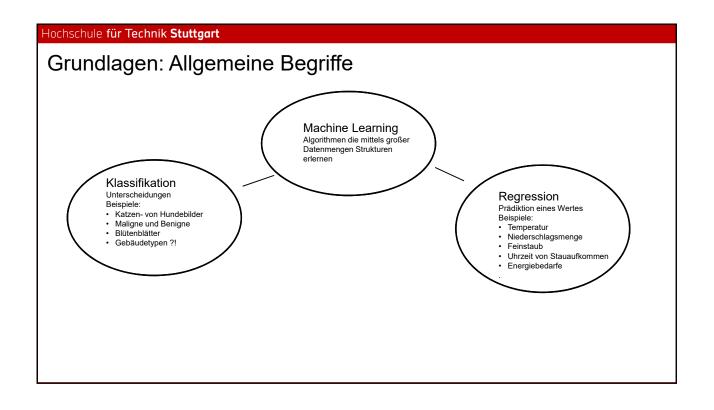
Sommerkolloquium Bauphysik 2023

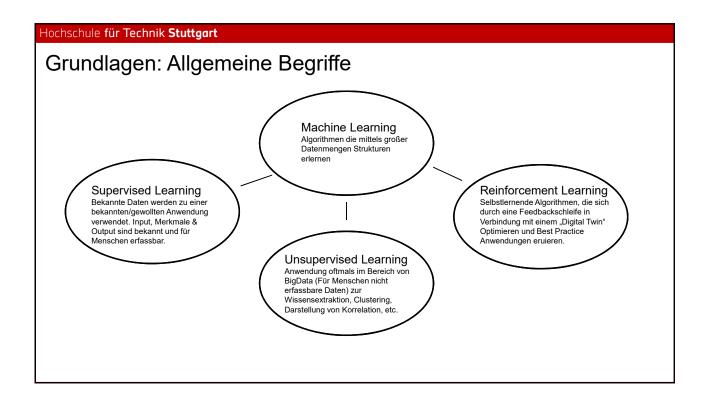
KI – Und die unspektakuläre Anwendung im Zentrum für nachhaltige Energietechnik

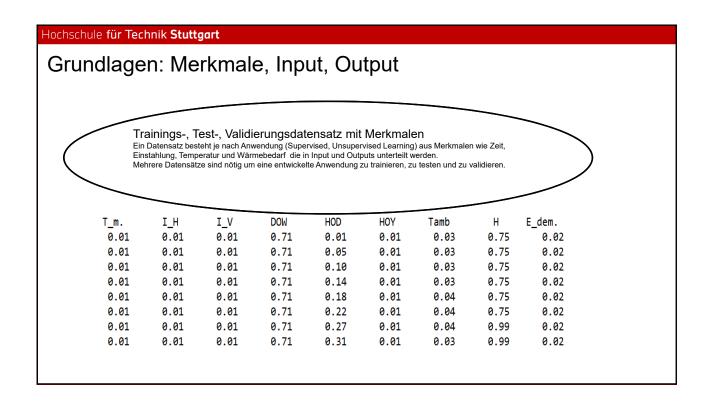
Robert Otto M.Sc. Hochschule für Technik Stuttgart

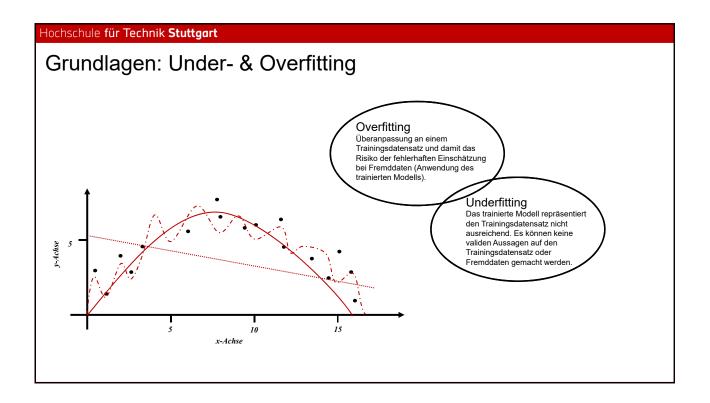

Was ist KI und wie nutzen wir sie um gängige Problemstellungen in der Forschung anzugehen? Top oder Flop, wo macht KI Sinn und wo sind physikalische/ mathematische Modelle nach wie vor überlegen? Ein kurzer Einblick in die Anwendung und Verwendung von KI-Algorithmen im Zentrum für nachhaltige Energietechnik.

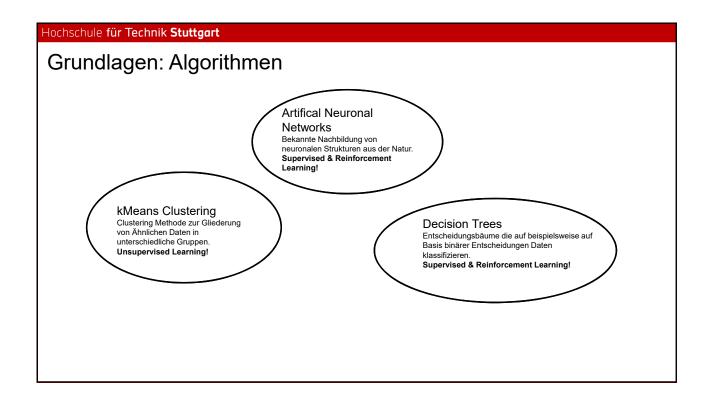

Hochschule für Technik Stuttgart


KI – Und die unspektakuläre Anwendung im Zentrum für nachhaltige Energietechnik


Robert Otto

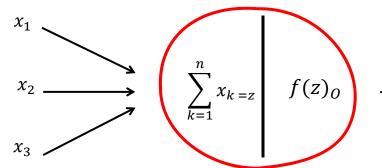

Zentrum für Nachhaltige Energietechnik <u>Hochschule für Technik Stuttgart</u>





Hochschule für Technik Stuttgart

Grundlagen: ANN - Artificial Neuronal Networks


Artifical Neuronal

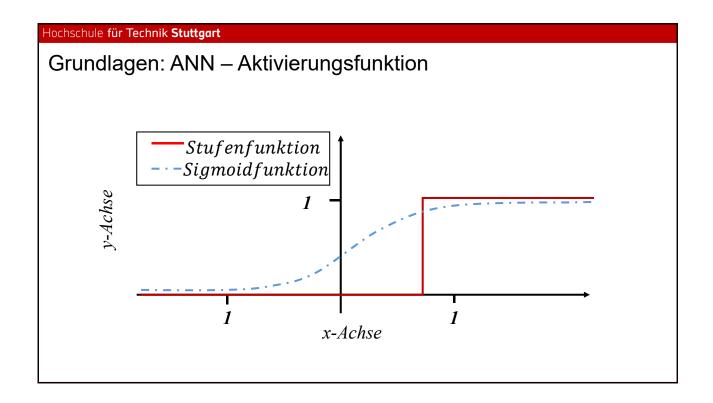
Networks

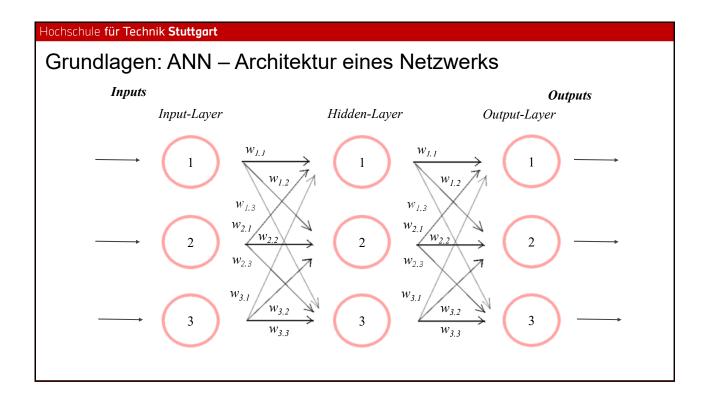
- Neuronale Netze bestehen aus unterschiedlichen Neuronen. Diese bestehen in der Regel aus dem Zellkörper, aus den Dendritenbäumen sowie dem Axon
- Die Dendriten leiten Signale aus anderen Nervenzellen an das Neuron, in dem eine Potentialfunktion, bei überschreiten des Richtwertes dazu führt, dass das Neuron schießt

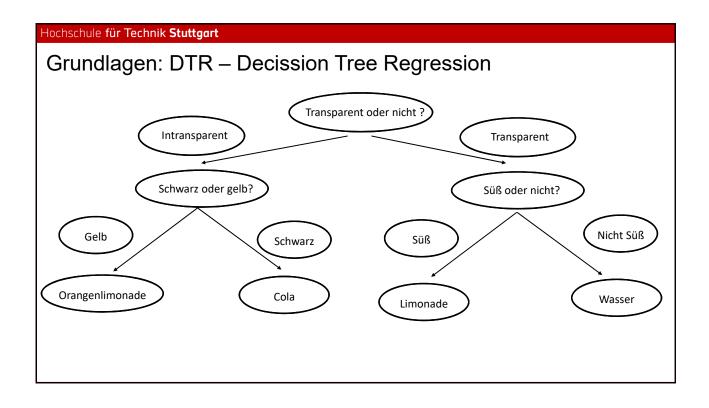
Hochschule für Technik Stuttgart

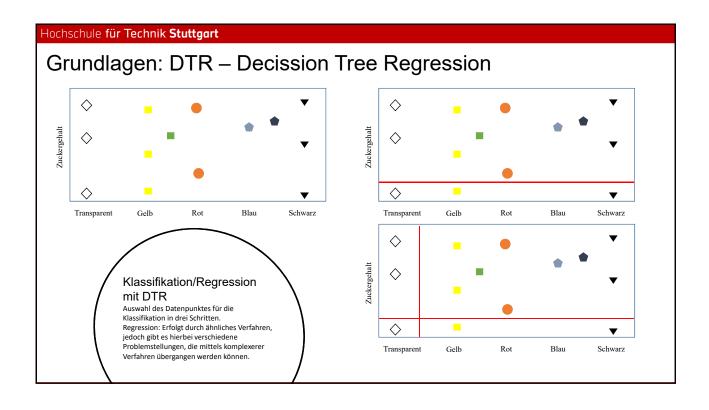
Grundlagen: ANN - Artificial Neuronal Networks

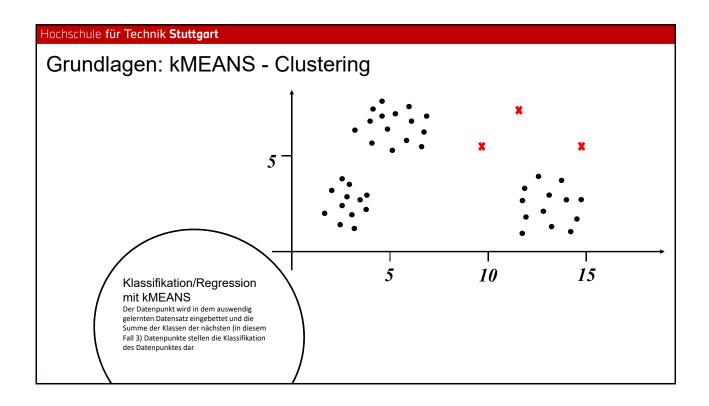
Input

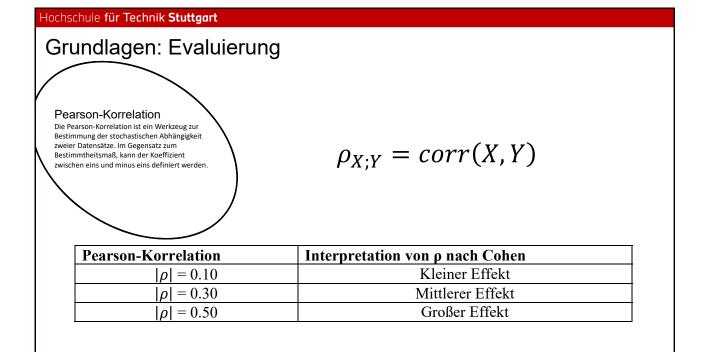

Der Input für ein Neuron stammt entweder durch eine Eingabe oder von einem anderen Neuron


Verarbeitung


Die Summe der Inputs wird an eine "Aktivierungsfunktion" übergeben.


Output


Der Output wird an ein weiteres Neuron gegeben oder als Ausgabe verwertet



Hochschule **für Technik Stuttgart**

Grundlagen: Evaluierung

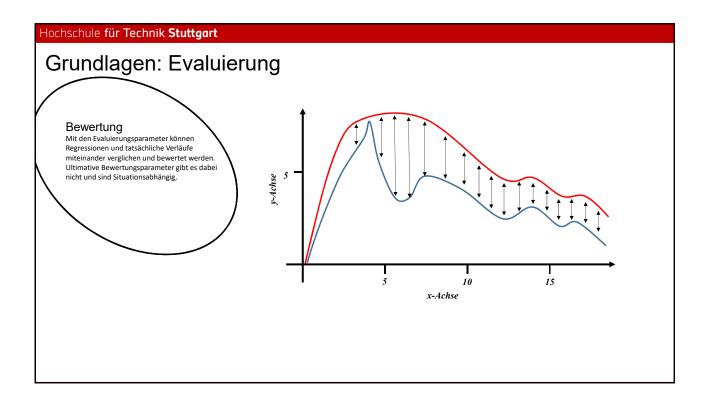
Determinationskoeffizient

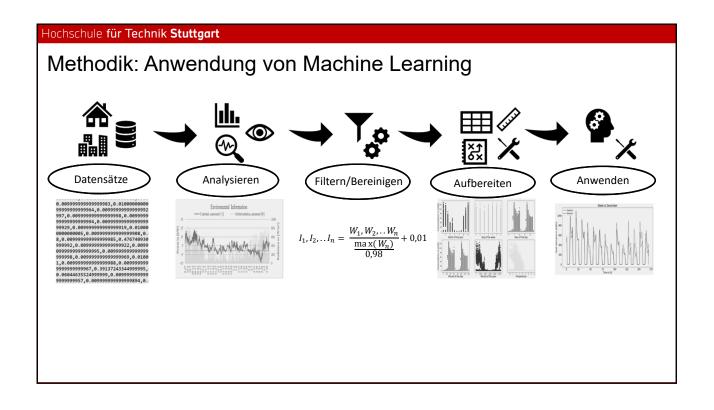
Die Das Bestimmtheitsmaß ist eine Kennzahl, die in der Statistik verwendet wird, um die Qualität einer Regression zu definieren. Hierbei wird diese oftmals nur als "R²" bezeichnet. Das Verfahren geht davon aus, dass man eine prädiktive Funktion bzw. Regression mit einer Punktwolke vergleicht.

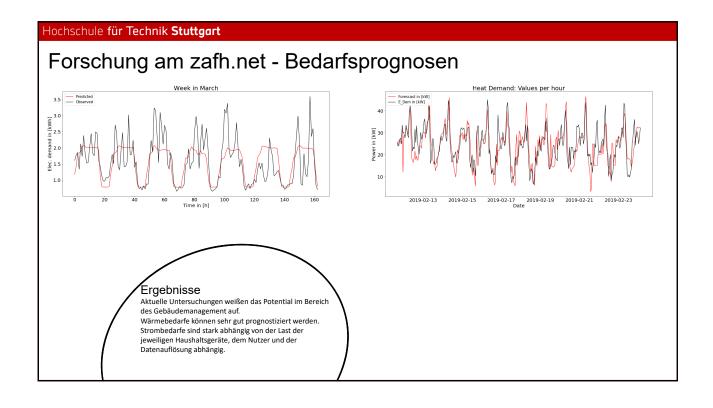
$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

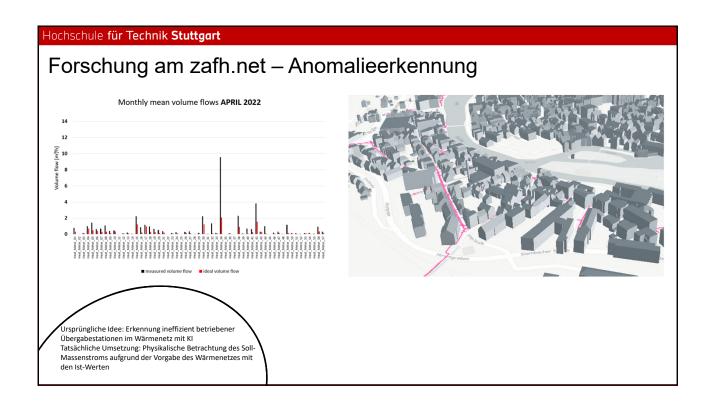
Bestimmtheitsmaß R2	Interpretation von R ²
< 0,50	Schlecht bis mäßig
0,50-0,85	Befridigend bis gut
> 0,85	Sehr gut

Hochschule für Technik Stuttgart

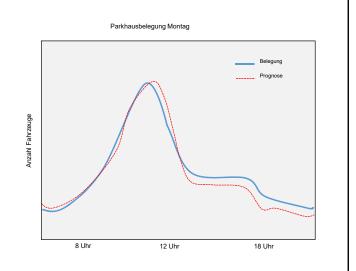

Grundlagen: Evaluierung


MAPE


Der mittlere absolute prozentuale Fehler oder MAPE stellt hierbei die absolute prozentuale Abweichung der Werte dar. Ein besonders niedriger Wert bedeutet somit eine gute Wiedergabe des Modells.

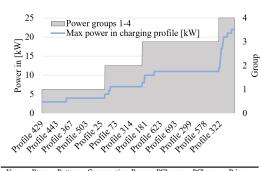

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Fehlerinterpretation MAPE	Interpretation von MAPE
0-50%	Abhängig vom Datensatz, gut bis befriedigend!
50-100%	Abhängig vom Datensatz, gut bis befriedigend!
>100%	Abhängig vom Datensatz, befriedigend bis schlecht!



Hochschule für Technik Stuttgart

Prognose der Parkraumbelegung


- Historische Daten der Parkraumbelegung differenzierter Parkhäuser werden als Trainingsdaten verwendet
- Ein ML-Algorithmus wird mit den aufbereiteten Daten trainiert
- Das trainierte Modell erreicht eine Genauigkeit von bis zu 95% (R² bzw. Bestimmtheitsmaß)
- Verfügbarkeit der potentiellen EVs kann somit prognostiziert werden

Hochschule für Technik Stuttgart

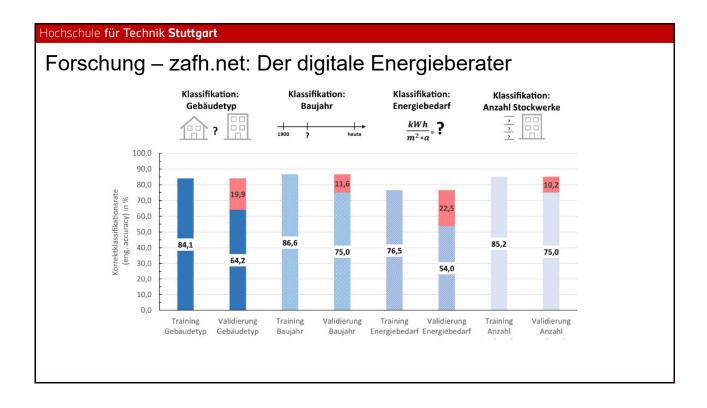
Schlussfolgerungen aus dem Ladeverhalten

- Ca. 120.000 BEVs laden unter 11 kW
- Gängige Ladeleistung bei PHEV 3.6-7.3 kW
- Kombiniert aus der maximalen Ladeleistung und der geladenen Energiemenge lässt sich ein Ladeprofil einem Fahrzeugtyp zuweisen
- Zukünftig soll so evtl. sogar die Wahrscheinlichkeit für ein Fahrzeugmodell abgeschätzt
- Einsatz von KI soll die Klassifizierung erleichtern

Year	Power	Battery	Consumption	Range	PCharge	PCharge	Price
	[kW]	[kWh]	[kWh/km]	[km]	$[kW_{AC}]$	$[kW_{DC}]$	[€]
2020	300	86.5	0.237	365	11	155	81,500
2013	125	47	0.158	297	11	49	39,000
2020	87	37.3	0.17	219	11	85	30,560
2020	100	28.5	0.168	170	6.6	56	33,850
2019	150	64	0.162	395	11	77	41,850
2021	160	56	0.172	326	6.6	100	37,550
2017	150	58	0.173	335	7.4	46	42,990

Hochschule für Technik Stuttgart

Forschung – zafh.net: Der digitale Energieberater


- Idee: Via Foto ein Gebäude zu klassifizieren
- Mittels Klassifiziereung und CityGML-Daten Sanierungsszenarien berechnen
- Soll zukünftig Energieberater*innen

Hochschule für Technik Stuttgart

Sommerkolloquium Bauphysik 2023

Wie mindern wir die Emissionen im Gebäudesektor? Über Klimaschutzgesetze, GEG, BEG und KMR

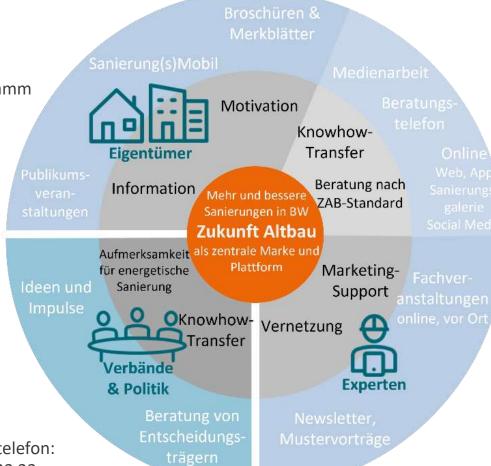
M.Sc. Dipl.-Ing. (FH) Frank Hettler Zukunft Altbau

Die Klimaschutzgesetze von Bund und Land verursachen im Gebäudesektor immer ambitioniertere Vorgaben, um die geplanten CO2-Emissionsminderungen zu erreichen. Der Dreiklang aus fordern, fördern und informieren führt derzeit zu erheblichen Diskussionen von der politischen Ebene bis hin zu Hauseigentümerinnen. Welche Vorgaben stehen dabei bereits fest, welche Entscheidungen beeinflussen die kommenden Monate und die Entwicklungen im Gebäudebereich am meisten?

Wie mindern wir die Emissionen im Gebäudesektor? Über Klimaschutzgesetze, GEG, BEG & KMR

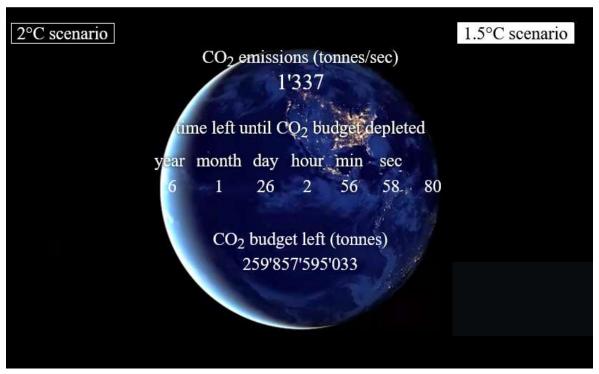
Sommerkolloquium Bauphysik 26.05.2023

M.Sc. Frank Hettler Dipl.Ing (FH) – Bereichsleitung Zukunft Altbau Klimaschutz- und Energieagentur Baden-Württemberg


Zukunft Altbau

 Neutrales Informations- und Marketingprogramm zur energetischen Gebäudesanierung

- Für Wohngebäude, Nichtwohngebäude und Experten: gewerkneutral, ganzheitlich und kostenlos
- Kooperationspartner: zentrale Plattform für Verbände, Kammern und Expertennetzwerk
- Programmträgerin: KEA Klimaschutz- und Energieagentur Baden-Württemberg GmbH
- Gefördert durch das Umweltministerium Baden-Württemberg

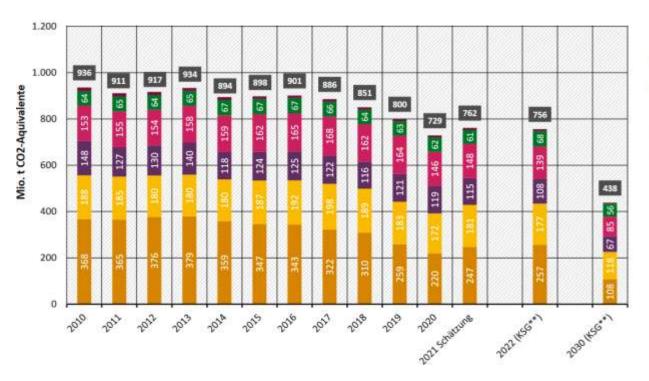


Beratungstelefon: 08000 12 33 33

Rahmen und Klimaschutzgesetze

CO₂-Uhr der Mercator-Stiftung

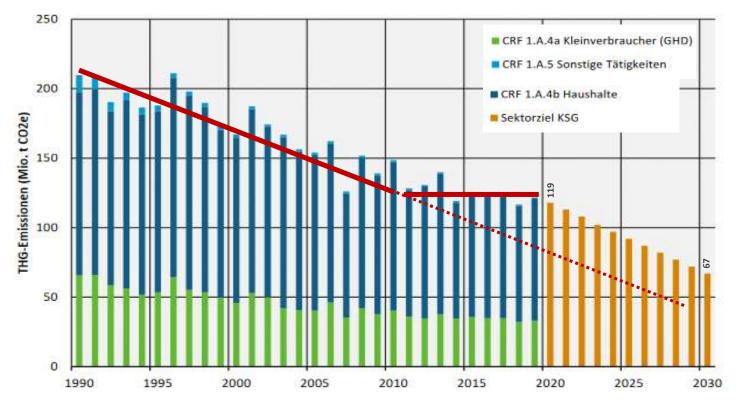
Quelle: www.mcc-berlin.net


Klimaerwärmung 1,5°C oder 2°C?

Thema	1,5° C Erwärmung	2° C Erwärmung
Extreme Hitze	"Nur" jeder 2. Sommer wird wie 2016	9 von 10 Sommern werden wie 2016
Korallensterben	2/3 aller Korallen sterben ab	99% aller Korallen sterben ab
Artenvielfalt	8% der Pflanzenarten, 6% der Insekten, 4% der Wirbeltiere betroffen	17% der Pflanzenarten,18% der Insekten,8% der Wirbeltiere betroffen
Flucht- bewegungen	30,7 Mio. Menschen wg. Klimaveränderungen von 1,1°C	Mehrere hundert Millionen Menschen
Krankheiten	Malaria, West-Nil-Fieber, Zika treten schon heute auf	Mit jedem Zehntelgrad wachsen gesundheitliche Risiken (dazu: Hitze & Luftverschmutzung)

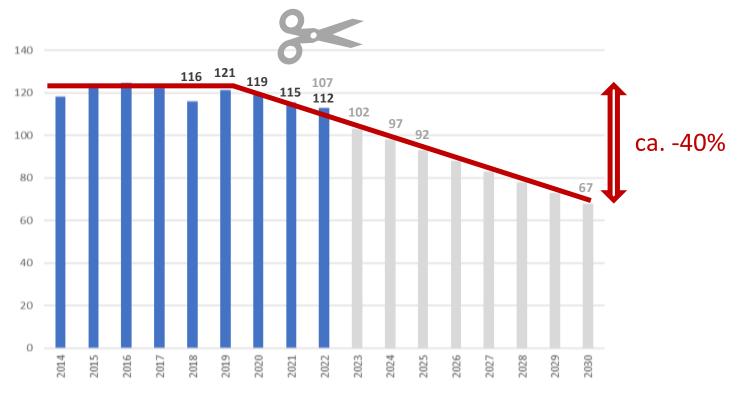
Quellen unter: https://germanzero.de/blog/warum-1-5-grad

Klimaschutzgesetz Bund - Treibhausgasemissionen


- Energiewirtschaft
- Industrie
- Gebäude
- Verkehr
- Landwirtschaft
- Abfallwirtschaft und Sonstiges

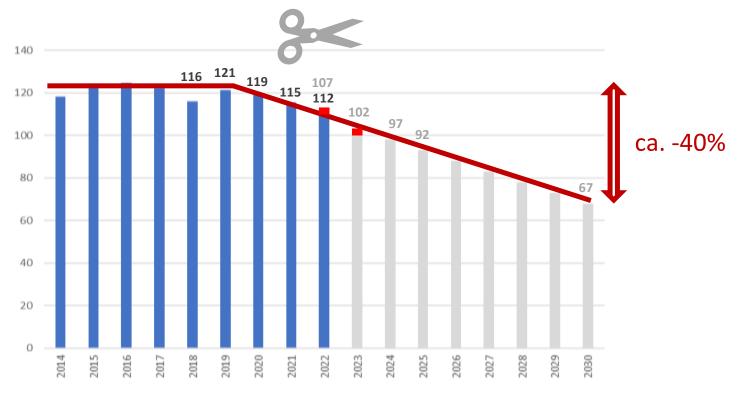
- * Die Aufteilung der Emissionen weicht von der UN-Berichterstattung ab, die Gesamtemissionen sind identisch.
- ** entsprechend der Novelle des Bundes-KSG vom 12.05.2021, Jahre 2022-2030 angepasst an Über- & Unterschreitungen

 $Quelle: www.umweltbundesamt.de/sites/default/files/medien/479/bilder/dateien/entwicklung_der_treibhausgasemissionen_in_deutschland.pdf$



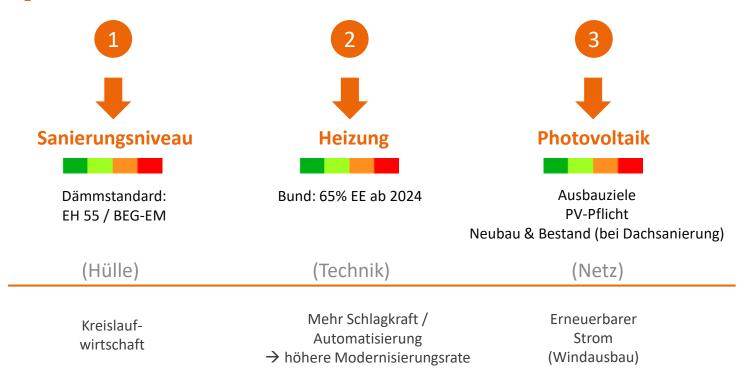
THG-Emissionen Gebäudesektor in D nach KSG

THG-Emissionen Gebäudesektor in D nach KSG



THG-Emissionen Gebäudesektor in D nach KSG

Umsetzung: Von BW bis zur EU


Umsetzung in Baden-Württemberg:

- Basis: KlimaG BW = Klimaschutz- und Klimawandelanpassungsgesetz (Stand Feb. 2023) https://um.baden-wuerttemberg.de/de/klima/klimaschutz-in-bw/klimaschutz-und-klimawandelanpassungsgesetz-baden-wuerttemberg
 - o Ziel: Bis **2030 >65%** CO₂-Minderung (ggü. 1990); bis 2040 Netto-Treibhausgasneutralität
- Darin enthalten u.a.:
 - Forschungsvorhaben "Energie- und Klimaschutzziele 2030"; Klima-Sachverständigenrat
 - Umsetzung KMR (Klima-Maßnahmen-Register); Einbeziehung aller Ministerien ergänzend: Energiekonzept BW
 - PV-Pflicht BW
 - Klimavorbehalt bei Förderprogrammen;
 - CO₂-Schattenpreis 200 € für Bau und Beschaffung des Landes
 - Kommunale Wärmeplanung BW
 - O ...

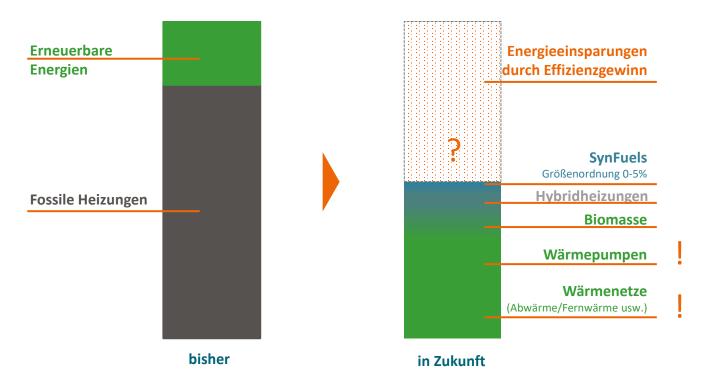
Forschungsvorhaben Ziele Gebäudesektor 2030 BW:

CO₂-Minderung von ca. 40% bis 2030

Forschungsvorhaben Sektorziele 2030:

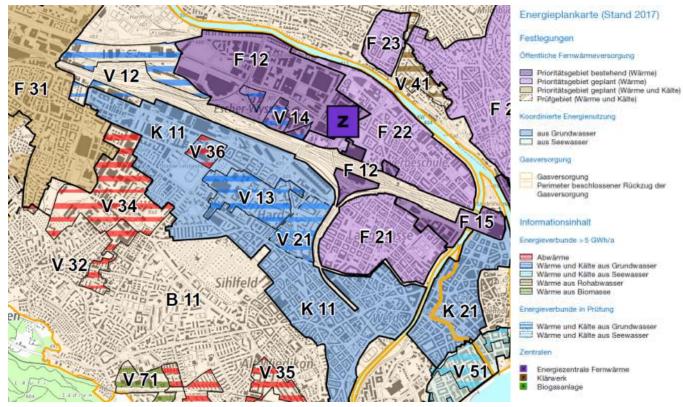
Sanierungsniveau

1

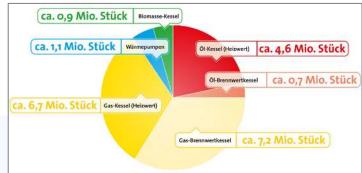

Sanierungsniveau EH 55 (BEG-EM-Förderung)

abelle:						
U-Wert GEG (gesetzlich) [W/m²K]	U-Wert BEG-EM (gefördert) [W/m²K]	Dämmung bei Wärme- leitfähigkeit 0,035 W/(mK)	•	•	•	•
0,24	0,14	ca. 24-32 cm	Passivhaus	BEG-Einzel-	Gesetzliche	Unterhalb gesetzlicher
0,24	0,20/0,192**	ca. 16-18 cm		maismainne	Amoruerungen	Anforderung
0,30	0,25	ca. 12 cm		•		
1,30	0,95					
	U-Wert GEG (gesetzlich) [W/m²K] 0,24 0,24 0,30	U-Wert GEG (gesetzlich) [W/m²K] U-Wert BEG-EM (gefördert) [W/m²K] 0,24 0,14 0,24 0,20/0,192** 0,30 0,25	U-Wert GEG (gesetzlich) [W/m²K] U-Wert BEG-EM (gefördert) [W/m²K] Dämmung bei Wärmeleitfähigkeit 0,035 W/(mK) 0,24 0,14 ca. 24-32 cm 0,24 0,20/0,192** ca. 16-18 cm 0,30 0,25 ca. 12 cm	U-Wert GEG (gesetzlich) [W/m²K] U-Wert BEG-EM (gefördert) [W/m²K] Dämmung bei Wärmeleitfähigkeit 0,035 W/(mK) 0,24 0,14 ca. 24-32 cm Passivhaus 0,24 0,20/0,192 [™] ca. 16-18 cm 0,30 0,25 ca. 12 cm	U-Wert GEG (gesetzlich) [W/m²K]	U-Wert GEG (gesetzlich) [W/m²K] 0,24 0,14 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,25 ca. 16-18 cm 0,30 0,25 ca. 12 cm

- Ziel: 8% Endenergieminderung bis 2030
- Unterschied: "tiefe" Sanierungen (EH 55) / Standardsanierung bzw. Einzelmaßnahmen
- Fazit: mehr und bessere Sanierungen gefordert; weg von Pinselsanierungen


Wie heizen wir in Zukunft?

Die Angaben sind als Größenordnungen zu verstehen; tatsächliche Entwicklungen abhängig von Zeithorizont, verschiedenen (gesetzlichen wie technischen) Rahmenbedingungen und je nach Definition.



Kommunale Wärmeplanung BW bis Ende 2023

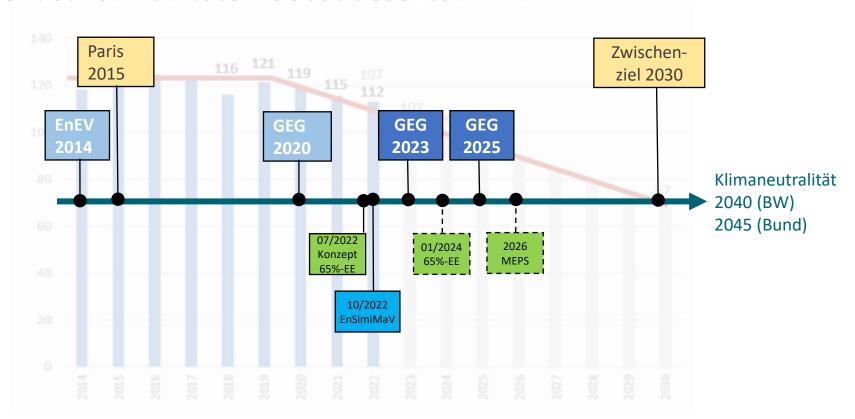
Einzelheizungen deutschlandweit

Absatzzahlen für Heizungswärmepumpen

Quellen: Grafik oben – www.bdh-industrie.de/heizsysteme, Grafik unten – BWP

Neues zum GEG (Gebäudeenergiegesetz)

Von WäSchVO über EnEV zum GEG


1977 1. Wärmeschutzverordnung (WäSchVO)1984 2. Wärmeschutzverordnung1995 3. Wärmeschutzverordnung

2002 Energieeinsparverordnung (EnEV)
2004 Energieeinsparverordnung
2007 Energieeinsparverordnung
2009 Energieeinsparverordnung
2013 Energieeinsparverordnung

2020 Gebäudeenergiegesetz (GEG)2023 GEG-Novelle (gepl. Start zum 01.01.2024)

Politische Aktivitäten Gebäudesektor in D.

65% erneuerbare Energien – Entwurf (19.04.2023)

- Hausübergabestation (Wärmenetz) nach § 71b
 → ...Wärmenetzbetreiber mit Transformationsplan bis 31.12.2026 (50% EE bis 2030; 100% EE bis 2045)
- Wärmepumpe → Es bestehen Anforderungen an Effizienz und Messung
- o **Biomasse** → automatisch beschickte Pelletkessel/-öfen → zwangsweise mit Solarthermie/PV
- Wärmepumpen-Hybridheizung bestehend aus Wärmepumpe in Kombination mit Brennwertkessel nach § 71h
 → Vorrang für fernansprechbare Wärmepumpe mit >30% Leistung des Spitzenlastkessels
- Solarthermische Anlage nach § 71e
- Stromdirektheizung nach § 71d
 → baulicher Wärmeschutz > -45 % (=Effizienzhaus 40) bzw. ohne wassergebundenem System >-30% (=EH 55)
- o Grüner / blauer Wasserstoff nach §§ 71f + 71g → ab 2030 mind. 50% Anteil

Ausnahmen / Übergang

- Großzügige Übergangsfristen über 3 / 5 / 6 Jahre (Austausch; Wärmenetz; Etagenheizung)
- Schutz für Mietende
 - Z.B. bei Einbau Wärmepumpe: JAZ nachweislich >2,5
 - z.B. bei Biogastarif oder Wasserstoff: Vergleichskosten Wärmepumpe schlechter JAZ=2,5 müssen Vermietende übernehmen

Quellen:

- https://www.gesetze-im-internet.de/geg/inhalts_bersicht.html
- https://www.bmwk.de/Redaktion/DE/Downloads/Gesetz/entwurf-geg.pdf? blob=publicationFile&v=6 (Kabinettsentwurf vom 19.04.2023)

Förderung Aktuell: BEG (bleibt erhalten!)

https://www.youtube.com/watch?v=cxE_mjFqNsE

Ab 2024: zusätzlich Klimabonus

Förderübersicht Wohngebäude (Einzelmaßnahmen)

Heizungstausch – Einzelheizungen

Art der Heizungsanlage		Förderung					
		Grund- förderung	Heizungs- Tausch-Bonus*	Boni für Wärmepumpe**	Max. Zuschuss		
Wärmepumpe	Mind. 65% erneuerbare	25%	10%	5%	40%		
Biomasse***	Energien	10%	10%		20%		
Solarkollektoranlage, Innovative Heizungstechnik Brennstoffzellenheizung		25%	10%		35%		

- Der Bonus gilt für den Austausch von funktionstüchtigen Öl-, Kohle- und Nachtspeicherheizungen sowie von funktionstüchtigen Gasheizungen, wenn deren Inbetriebnahme zum Zeitpunkt der Antragsstellung mindestens 20 Jahre zurückliegt. Für Gasetagenheizungen wird der Bonus unabhängig vom Zeitpunkt der Inbetriebnahme gewährt. Nach dem Austausch darf das Gebäude nicht mehr mit fossilen Brennstoffen im Gebäude oder gebäudenah beheizt werden.
- ** Es gibt zwei Boni für Wärmepumpen: 1. für die Wärmequelle (= Erdreich, Wasser und Abwasser) und 2. für die Verwendung natürlicher Kälte-mittel. Diese sind nicht kumulierbar.
- *** Biomasseheizungen müssen mit einer solarthermischen Anlage oder Wärmepumpe kombiniert werden. Diese Anlagen sind mindestens so zu dimensionieren, dass sie die Trinkwassererwärmung bilanziell vollständig decken könnten.
 Quelle: BEG, Stand 09.12.2022 (https://www.bmwi.de/Redaktion/DE/Artikel/Energie/bundesfoerderung-fuer-effiziente-gebaeude-beg.html)

24

Details zur Förderung (Einzelmaßnahmen)

Wärmepumpen

- Ineffizient betriebene Wärmepumpen werden nicht gefördert. Mindestanforderung Jahres-arbeitszahl (JAZ)
 - aktuell = 2,7
 - **ab** 01.01.2024 = **3,0**
- Hydraulischer Abgleich nach Verfahren B und dafür notwendige Heizlastberechnung sind Pflicht

Biomasse

- Nur noch **feinstaubarme Anlagentechnik** wird gefördert
- Nur in Kombination mit Wärmepumpe oder Solarthermie f\u00f6rderf\u00e4hig

Solarkollektoranlage

Wärmemengenzähler notwendig

Hybridheizungen

- Förderung immer nur für den **Erneuerbare-Energien-Anteil** (mind. 65%)
 - Bestehende Heizung: Ergänzung durch Wärmepumpe/ Biomasse/ Solarthermie
 - Einbau neuer Hybridanlage (mit fossilem Anteil)

Provisorische Heiztechnik

- Bei Heizungsdefekt werden für provisorische Zwischenlösungen (z. B. Mietanlagen) die (Miet-) Kosten gefördert
- Gilt nur, wenn innerhalb der Befristung des Zuwendungsbescheids ein f\u00f6rderf\u00e4hige/r Netzanschluss/Heizungsanlage eingebaut wird, die die gesamte Versorgung \u00fcbernimmt.
- Mietkosten werden erst **ab Antragstellung** (Vorhabenbeginn) höchstens für eine **Mietdauer von einem Jahr** gefördert.

Boni für Wärmepumpe (Einzelmaßnahmen)

+5%

Bonus für Wärmequelle

Der Bonus für die Wärmequelle gilt für effiziente Wärmepumpen mit den Wärmequelle Erdreich, Wasser oder Abwasser.

Bonus +5% für natürliches Kältemittel

Der Bonus wird gewährt, wenn ein natürliches Kältemittel eingesetzt wird.

Ausblick: ab 01.01.2028 werden nur noch Wärmepumpen mit natürlichen Kältemittel gefördert

Boni nicht kumulierbar

Ausblick – Stufenweise Einführung von Anforderungen an die Geräuschemission

Luft-Wasser-Wärmepumpen nur förderfähig, wenn Geräuschemissionen des Außengeräts zumindest **5 dB** (ab **01.01.2024**) bzw. **10 dB** (ab **01.01.2026**) niedriger liegen als die EU-Grenzwerte.

Alle Angaben ohne Gewähr!

Förderübersicht Wohngebäude (Einzelmaßnahmen)

Heizungstausch – Netzanschluss

Art der Heizungsanlage			Förderung			
		Grund- förderung	Heizungs- Tausch-Bonus*	Max. Zuschuss		
Wärme-Netzanso		30%	10%	40%		
Gebäude-Netzanschluss ≤ 16 Gebäude		25%	10%	35%		
Gebäudenetz Ohne Biomasse		30%		30% Ene		
Errichtung, Umbau und	Max. 25% Biomasse	25%		25% Exp		
Erweiterung**	Max. 75% Biomasse	20%		20%		

^{*} Der Bonus gilt für den Austausch von funktionstüchtigen Öl-, Kohle- und Nachtspeicherheizungen sowie von funktionstüchtigen Gas-heizungen, wenn deren Inbetriebnahme zum Zeitpunkt der Antragsstellung mindestens 20 Jahre zurückliegt. Für Gasetagenheizungen wird der Bonus unabhängig vom Zeitpunkt der Inbetriebnahme gewährt. Nach dem Austausch darf das Gebäude nicht mehr mit fossilen Brennstoffen im Gebäude oder gebäudenah beheizt werden. ** Die Wärme für das Gebäudenetz muss nach Durchführung der Maßnahme aus mindestens 65 % erneuerbaren Energien oder unvermeidbarer Abwärme stammen. Quelle: BEG, Stand 09.12.2022

(https://www.bmwi.de/Redaktion/DE/Artikel/Energie/bundesfoerderung-fuer-effiziente-gebaeude-beg.html)

Förderübersicht Wohngebäude (Einzelmaßnahmen)

Einzelmaßnah	me	Investitionszuschuss	iSFP-Bonus		
	nierung (bis 5 Wohneinh.) * k (außer Heizung)	15%	5%		
Gebäudehülle	 Dämmmaßnahmen an Außenwänden, Dächern, Kellerdecken und Bodenplatten Austausch von Fenstern und Außentüren Außenliegende Sonnenschutzeinrichtungen mit optimierter Tageslichtversorgung 				
Heizungs- optimierung*	 Hydraulischer Abgleich nach Verfahren B, Austausch von Heizungspumpen Dämmung von Rohrleitungen Einbau von Flächenheizungen, Niedertemperaturheizungen und Wärmespeichern Einbau von Mess-, Steuerungs- und Regelungstechnik 				
Anlagen- technik	 Einbau, Austausch oder Optimierung von Lüftungsanlagen mit Wärmerückgewinnung sowie bedarfsgeregelte zentrale Abluftsysteme Einbau digitaler Systeme zur energetischen Betriebs- und Verbrauchsoptimierung oder zur Verbesserung der Netzdienlichkeit ("Efficiency Smart Home") 				

* Förderung nur bei Heizungsanlagen, die mindestens zwei Jahre in Betrieb sind und nur bei Gebäuden mit bis zu fünf Wohneinheiten. Die Optimierung fossiler Heizungen wird nur bei Anlagen gefördert, die nicht älter sind als 20 Jahre. Bei wassergeführten Heizungssystemen wird ein hydraulisch abgeglichenes Heizungssystem vorausgesetzt. Sofern ein Heizungssystem nicht abgeglichen ist, muss ein hydraulischer Abgleich nach Verfahren B durchgeführt werden. Quelle: BEG, Stand 09.12.2022

(https://www.bmwi.de/Redaktion/DE/Artikel/Ener gie/bundesfoerderung-fuer-effiziente-gebaeudebeg.html)

Alle Angaben ohne Gewähr!

Boni für Wohngebäude (Effizienzhäuser)

EE-Bonus

+5%

Betrifft alle Effizienzhäuser

Einen zusätzlichen **Erneuerbare**-**Energien-Bonus** erhalten die
Gebäude, die eine Heizung
einbauen, die zu mindestens 65
Prozent mit Erneuerbaren
Energien betrieben wird.

NH-Bonus***5%

Betrifft alle Effizienzhäuser

Voraussetzung für den **Nachhal- tigkeits-Bonus** ist ein gebäudebezogenes Qualitätssiegel
Nachhaltiges Gebäude (QNG).

WPB-Bonus +10%

Betrifft Effizienzhäuser 40, 55 und 70 EE

Einen zusätzlichen Worst
Performing Building-Bonus
erhalten die Gebäude, deren
Endenergie größer oder gleich
250 kWh/m²a (Energieeffizienzklasse H) ist bzw. die 1957 oder
früher erbaut wurden und bei
denen mind. 75 Prozent der
Außenwand unsaniert ist.*

SerSan-Bonus 15%

Betrifft Effizienzhäuser 40 und 55

Der Bonus für Serielles Sanieren kann in Anspruch genommen werden, wenn abseits der Baustelle vorgefertigter Fassadenbzw. Dachelemente für die Sanierung verwendet werden. Ihr hoher Vorfertigungsgrad reduziert den handwerklichen Aufwand vor Ort deutlich.**

WPB-Bonus + SerSan-Bonus = max. 20% Förderung

* Bei einer Wärmedämmung, die vor 1984 angebracht wurde, gilt das Gebäude als nicht gedämmt. ** Welche Vorgaben die vorgefertigten Elemente erfüllen müssen, regelt das "Infoblatt zu den förderfähigen Maßnahmen und Leistungen" *** Die Anforderungen für den NH-Bonus werden voraussichtlich im 2.Quartal 2023 bekannt gegeben. Quelle: BEG, Stand 09.12.2022 (https://www.bmwi.de/Redaktion/DE/Artikel/Energie/bundesfoerderung-fuer-effiziente-gebaeude-beg.html)

Alle Angaben ohne Gewähr!

Förderübersicht Wohngebäude (Effizienzhäuser)

	Effizienz-		Zinsver-				
	haus- standard	Grund- förderung	EE-/NH- Bonus	WPB- Bonus*	Serielle Sanierung **	billigung ***	
Gesetzlicher Neubau- standard	40	20%	5%	10%	15%		
	55	15%	5%	10%	15%		
	70	10%	5%	10%		~15%	
	85	5%	5%				
	Denkmal	5%	5%				

Anforderur	Anforderungswerte					
H' _T (Gebäude- hülle)	Q _P (Anlagen- technik)					
55%	40%					
70%	55%					
85%	70%					
100%	85%					
	160%					

- Der Transmissionswärmeverlust (H'₊) beschreibt Wärmeverluste über die Gebäude-hülle (Dach, Außenwand, Fenster, untere Gebäudeabschluss, Wärmebrücken).
- Der **Primärenergiebedarf (Q_p)** ist ein Kennwert für die Energie, die im Gebäude für Heizung und Warmwasser benötigt wird (= Endenergie), unter Berücksichtigung der Gewinnung, Speicherung, des Transports und Umwandlung des Energieträgers (Öl, Gas, Strom) bis zum Gebäude (Berücksichtigung über den sogenannten Primärenergiefaktor).

Förderfähige Kosten (pro Wohneinheit und .. Kalenderjahr)

- 120.000€
- 150.000 € mit EE-Bonus

- * Worst Performing Building-Bonus für Sanierungen zum Effizienzhaus 40 und 55 sowie 70 EE
- ** Bei Kombination von WPB und serieller Sanierung gibt es max. 20 Prozent Zuschuss.
- *** Die Zinsverbilligung entspricht dem Zinsvorteil des KfW-Kredits gegenüber dem Kredit bei der Hausbank und weist einen Subventionswert von ~15 Prozent auf, die Abweichung zwischen Förderkredit und Zinssatz der Hausbank darf dabei max, vier Prozent betragen.

Quelle: BEG, Stand 09.12.2022

(https://www.bmwi.de/Redaktion/DE/Artikel/Energie/bundesfoerderung-fuer-effizientegebaeude-beg.html)

Alle Angaben ohne Gewähr!

Eigenleistung (Einzelmaßnahmen)

Sanierung in Eigenleistung

Materialkosten für Eigenleistungen sind

- Rechnungen über Materialkosten
 - müssen den Namen des Antragstellers ent
 - dürfen ausschließlich förderfähige Posten enthalten
 - sind nicht in Barzahlung möglich
- Umfeldmaßnahmen sind nicht förderfähig

Bestätigung durch Sachkundige

Die fachgerechte Durchführung und korrekte Angabe der Materialkosten muss durch eine sachkundige Person bestätigt werden.

- Sachkundig sind
 - Energie-Effizienz-Experten
 - Fachunternehmer

Fördersatz für Material gleich wie bei jeweiliger Maßnahme

förderfähig.

Quelle: BEG, Stand 09.12.2022 (https://www.bmwi.de/Redaktion/DE/Artikel/Energie/bundesfoerderung-fuer-effiziente-gebaeude-beg.html)

In politischer Diskussion: zusätzlicher Klimabonus ab 2024

Grundförderung & Klimabonus I/II/III für Selbstnutzer

- Grundfördersatz: 30% für alle Erfüllungsoptionen (GEG § 71)
- Zusätzlich Klimabonus I 20%:
 GEG-AusnahmekandidatInnen und für EmpfängerInnen von Transferleistungen (z.B. Wohngeld),
 über 80-jährige
- Zusätzlich Klimabonus II+III 10%: gilt für alle, die zu neuer Heizung verpflichtet sind und gesetzl. Anforderung übererfüllen. Außerdem bei Havariefällen, wenn Anforderung übererfüllt wird.
- Übererfüllung = 5 Jahre vor Austauschpflicht oder mind. 70% EE anstatt 65% EE.
- Förderkredite ermöglichen, finanziellen Belastungen zeitlich zu strecken. Zuschüsse werden dann als Tilgungszuschuss integriert. Steuerliche Abschreibung als alternatives Instrument bleibt.
- o Bestehende Heizungen können weiter betrieben werden. Kaputte Heizungen können repariert werden.
- Beantragung Klimabonus I+II zeitlich gestaffelt nach dem Alter der Technik:
 - o ab 2024 älter als 40 Jahre (Herstelldatum bis 31.12.1984)
 - o ab 2025 älter als 35 Jahre, ab 2026 älter als 30 Jahre
- Für alle anderen Gebäudeeigentümer bleibt die bisherige Förderung erhalten.

"Wenn wir Kipppunkte erreichen, können wir nicht einfach sagen: wir schalten Technologie wieder aus". (Maja Göpel)

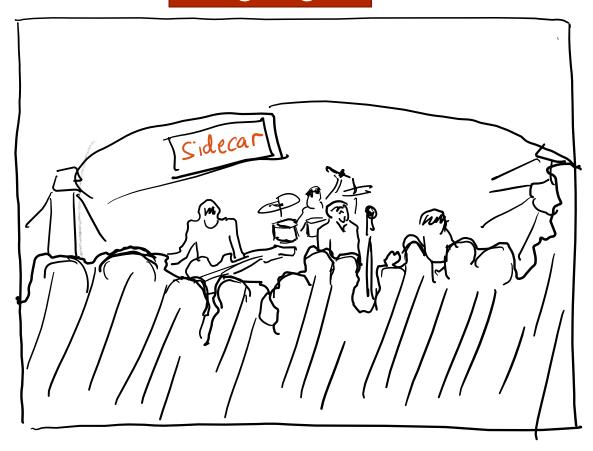
Hochschule für Technik Stuttgart

Sommerkolloquium Bauphysik 2023

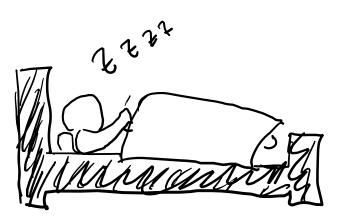
Die unaufhaltbaren tiefen Frequenzen in der Klubkultur

Prof. Dr. Berndt Zeitler Hochschule für Technik Stuttgart

Kultur, auch in der Nacht, ist wichtig für das Wohlergehen der Menschen. Leider können aber die entstehenden künstlerischen Geräusche, wenn sie z.B. in einem Schlafraum gelangen, als Lärm empfunden werden. Die störenden Komponenten liegen dabei meistens bei den tiefen Frequenzen. In diesem Beitrag werden die Phänomene, wie z.B. Schalldämmung, Ausbreitung und unter anderem Beugung die dazu beitragen, dass die tiefen Frequenzen meist zu den Störungen führen, kurz an einem Fallbeispiel geschildert und mit Hörbeispielen verdeutlicht.


Die unaufhaltbaren tiefen Frequenzen in der Klubkultur

Berndt Zeitler, HFT Stuttgart Sommerkolloquium 2023


Motivation

Vergnügen

VS

Entspannen/Erholen

Kontext

Neue Regelwerke und alte (Kultur)Konflikte

FREITAG, 23. SEPTEMBER 2022

Schallgeschützte Clubkultur

Moderation: Christian Popp

09:15 Das Problem heißt BÄSSE – Warum die tiefen Frequenzen überall hinkommen Prof. Dr.-Ing. Berndt Zeitler - Stuttgart

09:45 Normativer "Schallschutz" für die Clubkultur? Berliner Sicht und Erfahrungen mit Veranstaltungen draußen

Dr. Dirk Liebrecht - Berlin

10:15 Fragen + Diskussion anschließend Kaffeepause

11:00 In Hamburg sind die Nächte lang – akustische Nachbarschaftsprobleme der Clubkultur

Thore Debor - Hamburg

11:30 Live-Kultur braucht Termine – was der Fußball-WM recht ist, muss den Clubs billig sein

Marc Wohlrabe - Berlin

12:00 Abschlussdiskussion auf dem Podium

Moderation: Margit Bonacker Thore Debor - Hamburg Dr. Dirk Liebrecht - Berlin Marc Wohlrabe - Berlin Prof. Dr. Berndt Zeitler - Stuttgart

06. bis 09. MÄRZ 2023

Sitzung "Schallschutz im Umfeld von Musikclubs 1" $Mi. \mid Y \mid 5$

98

DAGA 2023

Programm

14:00 Wieviel Musik verträgt eine Stadt? Für einen neuen Umgang mit musikalischen Schallkonflikten Thore Debor, Clubkombinat Hamburg e. V.

14:20 Ergebnisse einer Studie zur Beurteilung von Freizeitlärm in

Julia Kuhlmann^a, Christoph Brunn^b, Jonas Egeler^c, Christine Huth^c, Manfred Liepert^c, Dirk Schreckenberg^a und Silvia Schütte^b

*ZEUS GmbH; b Öko-Institut e.V.; c Möhler + Partner Ingenieure AG

14:40 Lärm von Musikklubs - Schutzziele und Minderungskonzepte

Michael Jäcker-Cüppers Arbeitsring Lärm der DEGA (ALD)

15:00 Warum tiefe Frequenzen der Klubkultur Schwierigkeiten bereiten

Berndt Zeitler und Martin Schneider Hochschule für Technik Stuttgart

15:20 Erfahrungen mit Schallpegelmessungen von Veranstaltungen

Andreas Ederhof Der Lärmgutachter

16:20 Tieffrequente Immissionen im Freizeitlärm - Forschungsvorhaben zur Entwicklung eines spezifischen Mess- und Beurteilungsverfahrens für Veranstaltungslärm

Benjamin Bernschütz^a, Lukas Roskosch^a, Christoph Pörschmann^b, Hendrik Himmelein^b, Jörn Latz^c, Darius Styra^c, Thomas Przybilla^d und Detlef Krahé^c

^aTH Mittelhessen, FB MuK, Eventmanagement und -technik, Gießen; ^bTH Köln, Institut für Nachrichtentechnik; 'Kramer Schalltechnik GmbH; ^aLandesamt für Natur, Umwelt und Verbraucherschutz NRW; 'Bergische Universität Wuppertal

16:40 Hamburg St. Pauli - Musik und Wohnen rund um die Reeperbahn

Markus Jordan Bezirksamt Hamburg-Mitte 17:00 Verminderung der Schallemissionen urbaner Open Airs durch mobile Schallschutzwände

Julian Stehling, Steffen Lepa, David Ackermann und Stefan Weinzierl

TU Berlin, Fachgebiet Audiokommunikation

17:40 Proaktives Noise Management

d&b audiotechnik GmbH & Co. KG

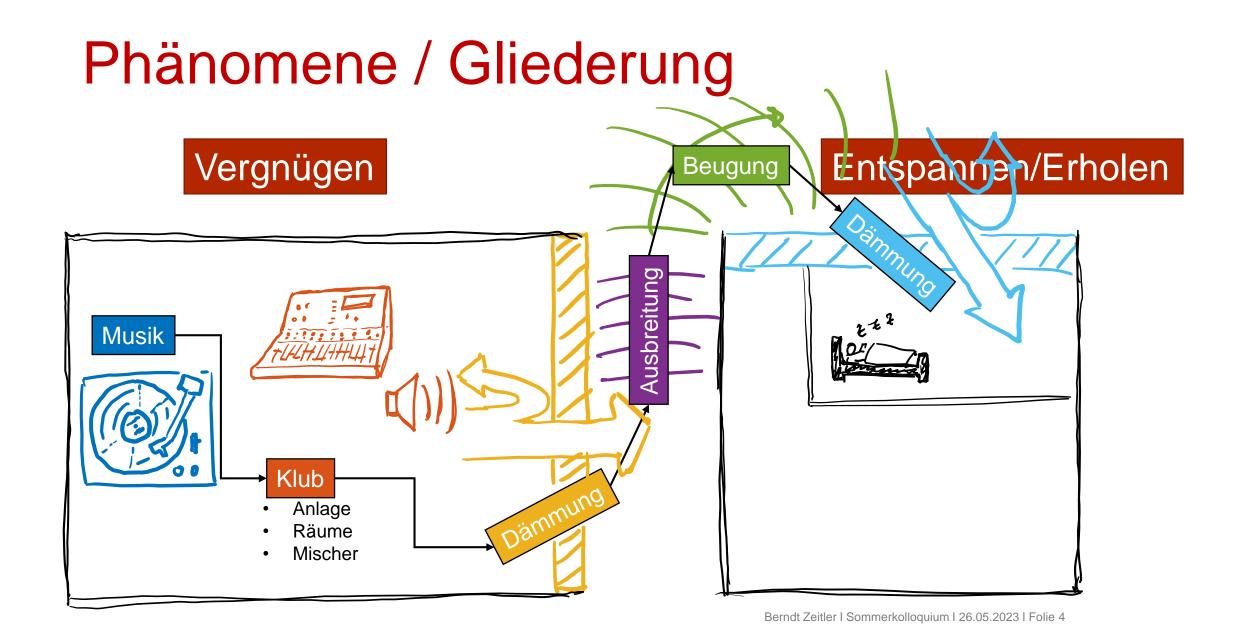
18:00 Eine Experimentierklausel zur TA Lärm als Instrument zur Lösung von Lärmkonflikten?

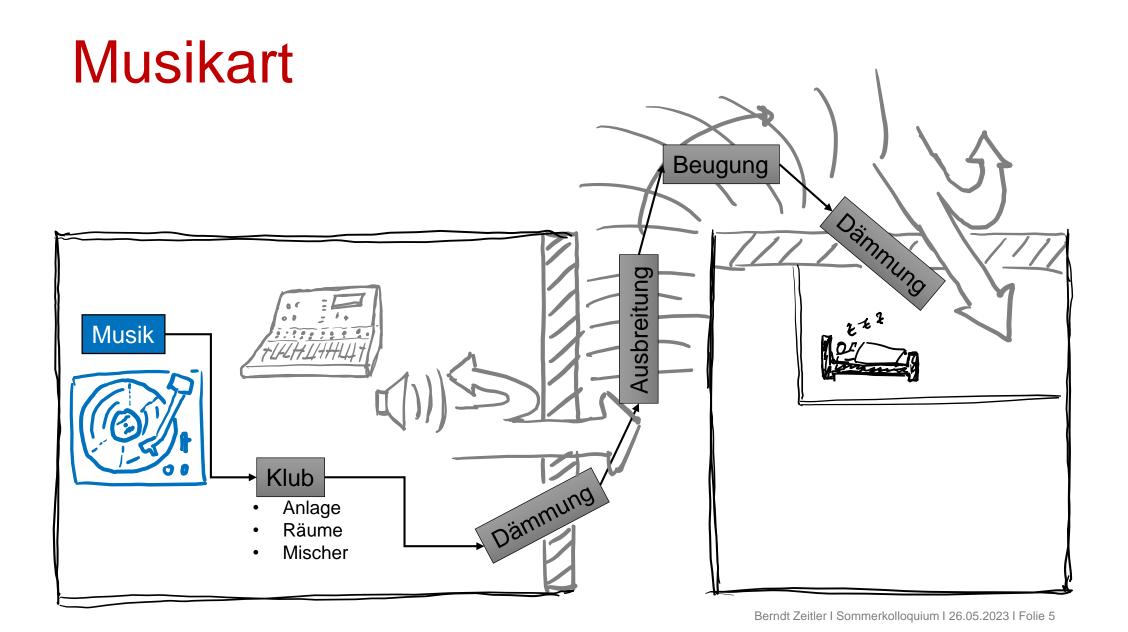
Dirk Liebrecht Senatsverwaltung für UMVK, Berlin

18:20 Konzept einer Studie zur Beurteilung von Freizeitlärm in Städten

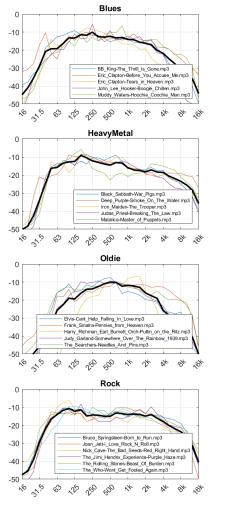
Jonas Egeler^a, Christoph Brunn^b, Christine Huth^a, Julia Kuhlmann^c, Manfred Liepert^a, Dirk Schreckenberg^c und Silvia Schütte^b

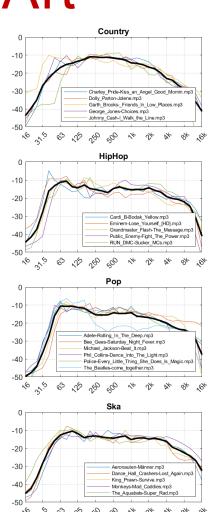
aMöhler + Partner Ingenieure AG; bÖko-Institut e.V.; aZEUS GmbH

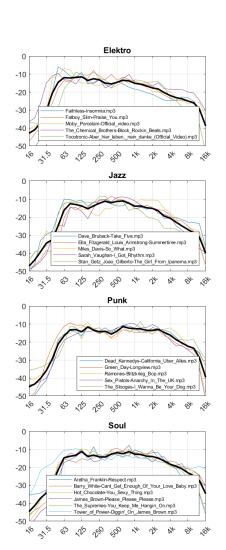


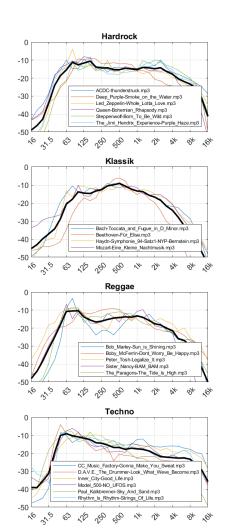

DATUM

16.-18. November 2023 Berlin

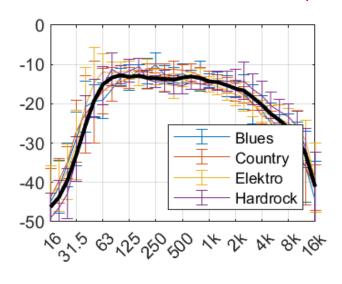

Die sechste STADT NACH ACHT steht unter dem Motto N SHT FEVER – der Rückkehr des Nachtlebens und seiner exstatischen Versorechnungen. Nach der Pandemie, die uns alle seit Jahren aus den Clubs, Bars, Theatern und anderen Orten einer nächtlicher Kultur verbannt hat, können wir uns jetzt fast überall wieder in wilde Ausschweifungen stürzen und uns genüßlich der Vorfreude auf das nächste Kultur reignis hingeben.

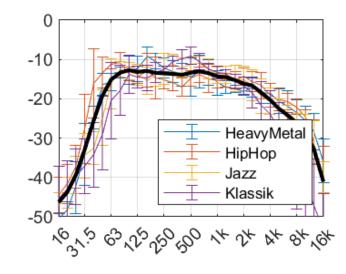

Berndt Zeitler I Sommerkolloquium I 26.05.2023 I Folie 3

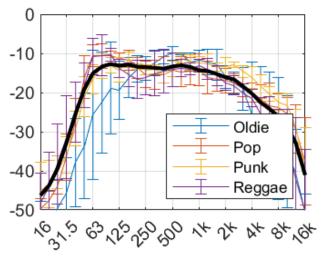


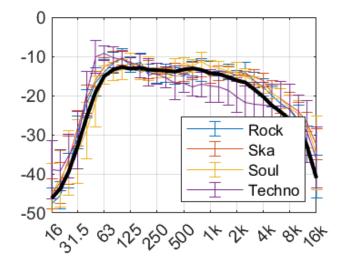


Musik Art








- Blues
- Country
- Elektro
- Hardrock
- Heavy Metal
- Hip Hop
- Jazz
- Klassik
- Oldies
- Pop
- Punk
- Reggae
- Rock
- Ska
- Soul
- Techno

Musik Art (Z-Bewertet)

<u>Klassik</u>

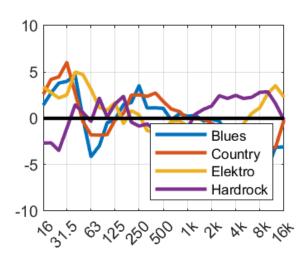
Für Elise von Beethoven

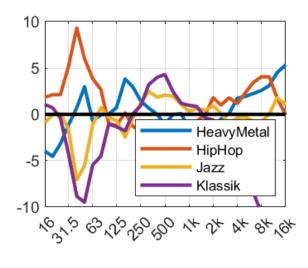
Heavy Metal

Master of Puppes von Matelica

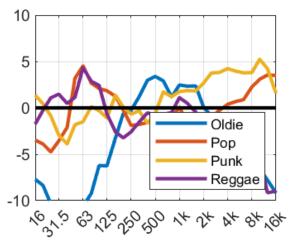
<u>Oldie</u>

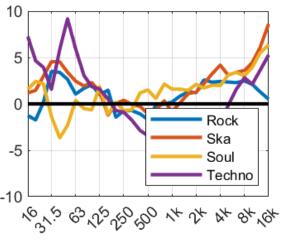
Puttin on the Ritz von Harry Richman


<u>Pop</u>

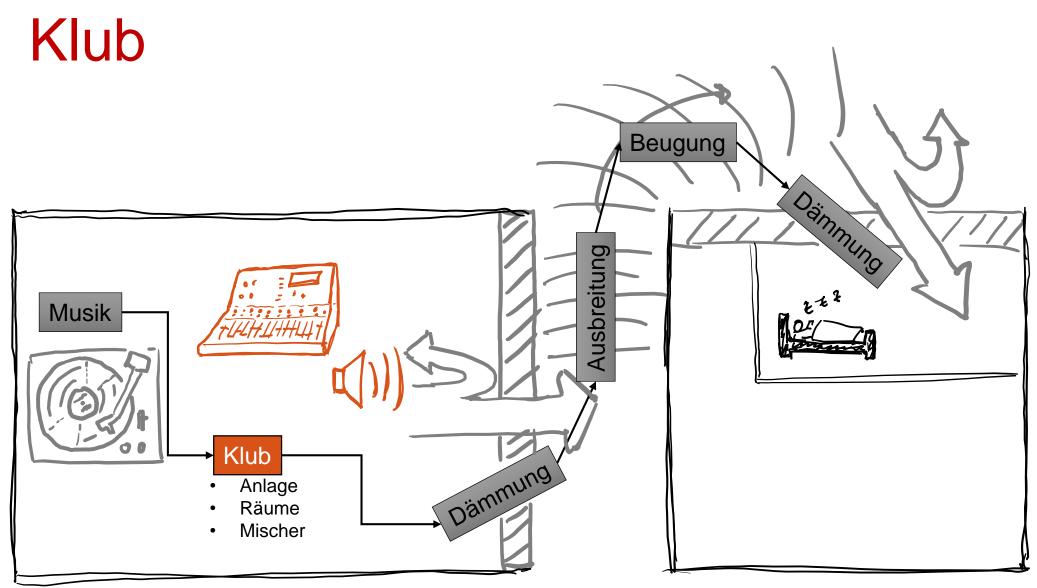

Come together von The Beatles

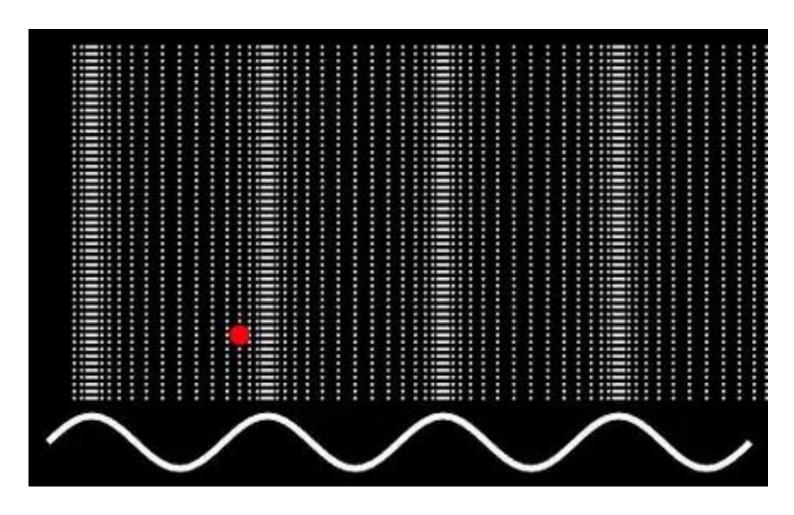
Berndt Zeitler I Sommerkolloquium I 26.05.2023 I Folie 7


Musik Art



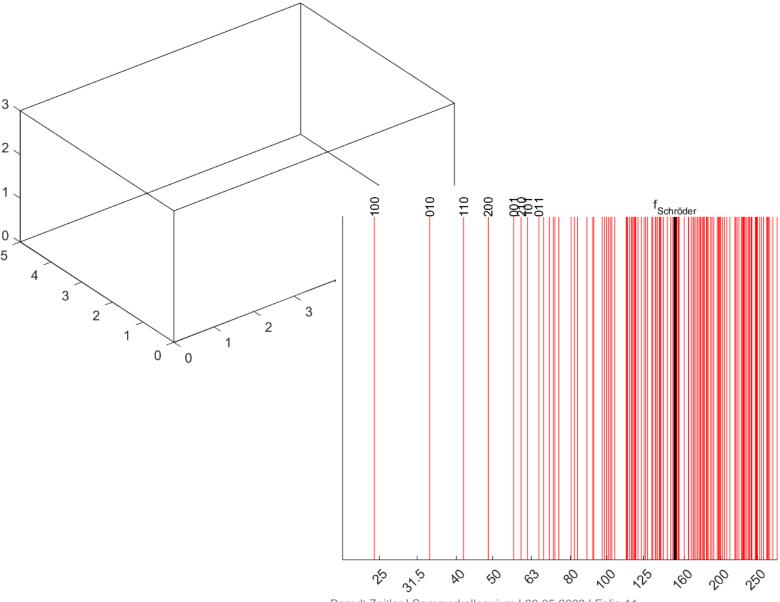
- Country, Blues und Elektro starke Bässe
- Hard Rock nicht so starke Bässe


- Hip Hop sehr starke Bässe
- Klassik und Jazz wenig Bässe


 Oldies sehr wenig Bässe

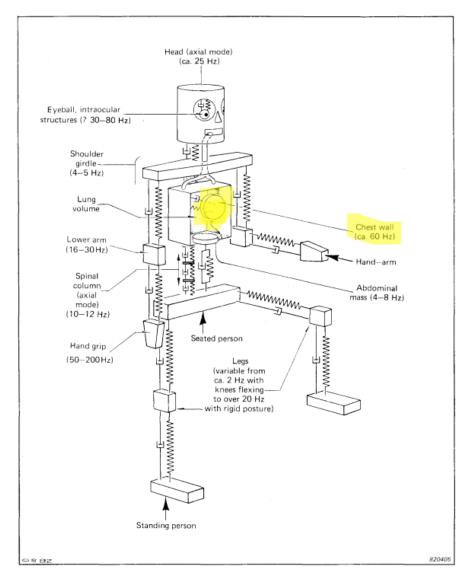
- Rock und Ska starke Bässe
- Techno sehr starke Bässe

Berndt Zeitler I Sommerkolloquium I 26.05.2023 I Folie 9


Klub Schallwellen

Klub

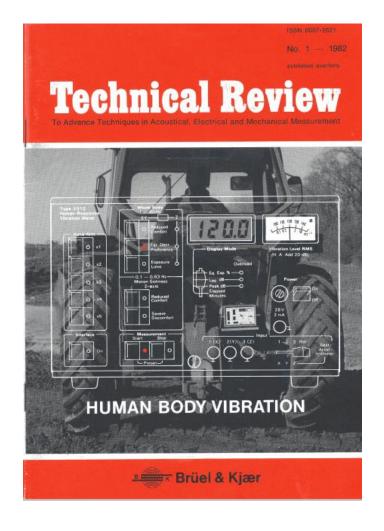
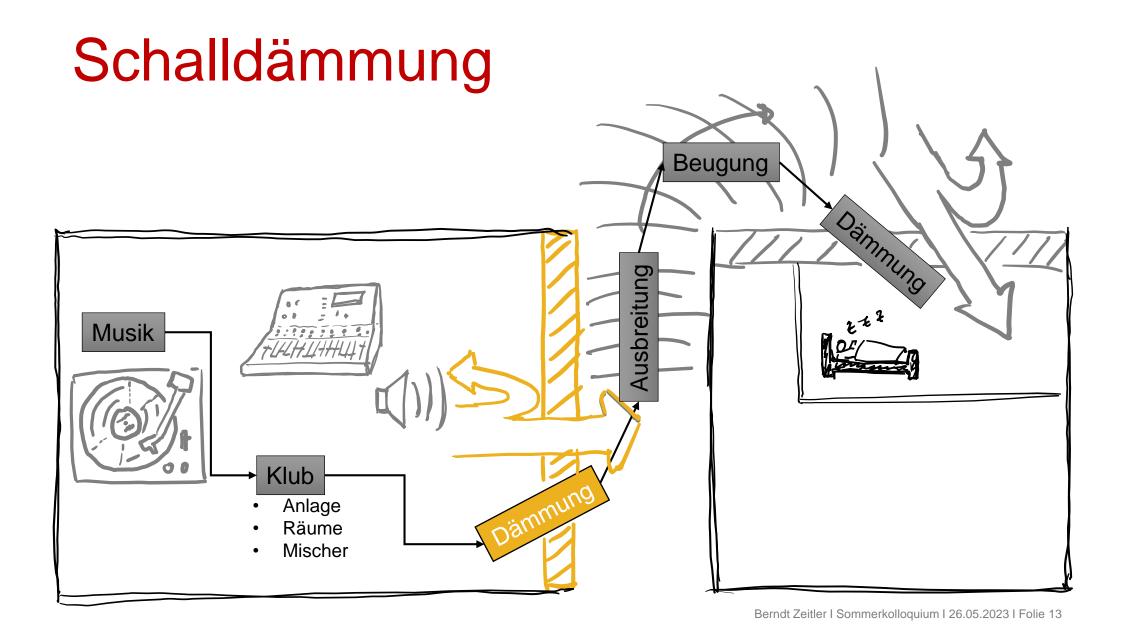
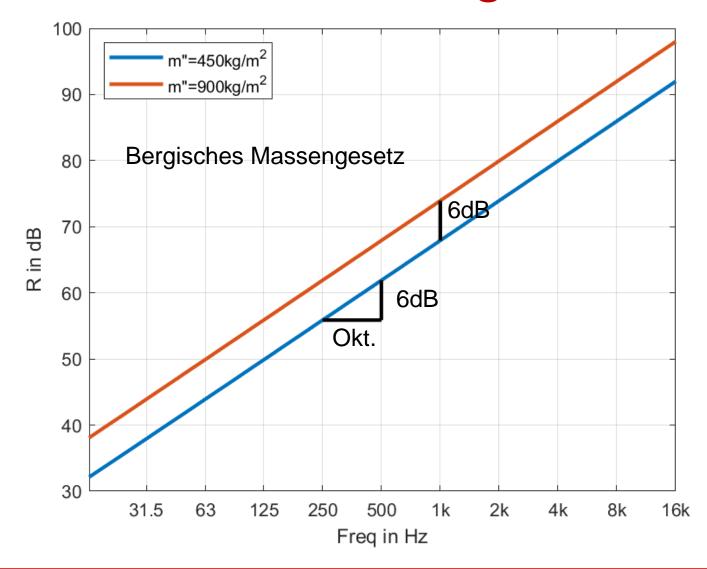
- Anlage
 - Leistung
 - Frequenzgang

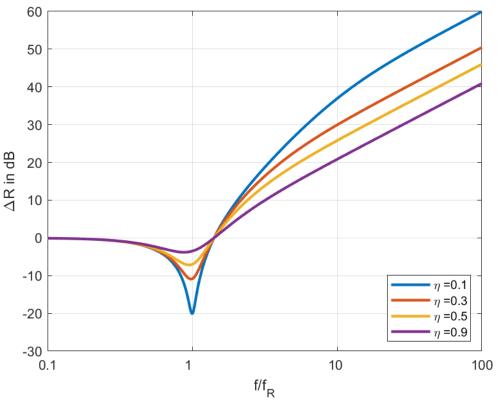

- Raum(moden)
 - Unterdrücken (EQ)
 - Resonanzabsorber
 - Kanten-&Eckabsorber

Berndt Zeitler I Sommerkolloquium I 26.05.2023 I Folie 11

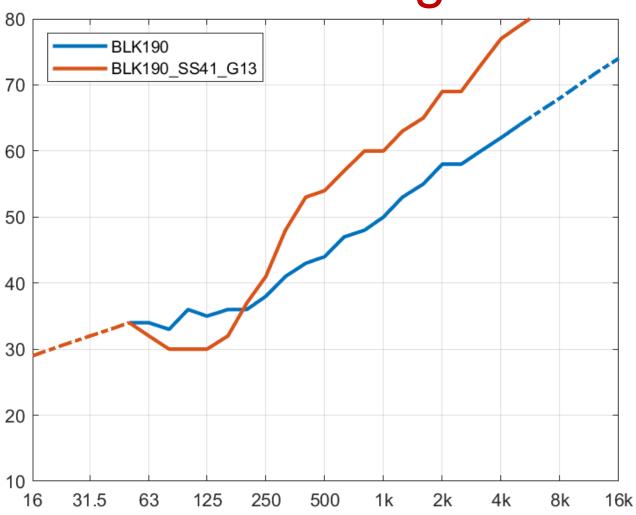
Klub

- Mischer
 - Präferenzen
 - Spüren 60Hz


Fig. 1. Simplified mechanical system representing the human body standing on a vertically vibrating platform

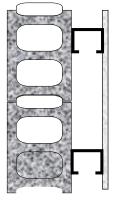
Schalldämmung

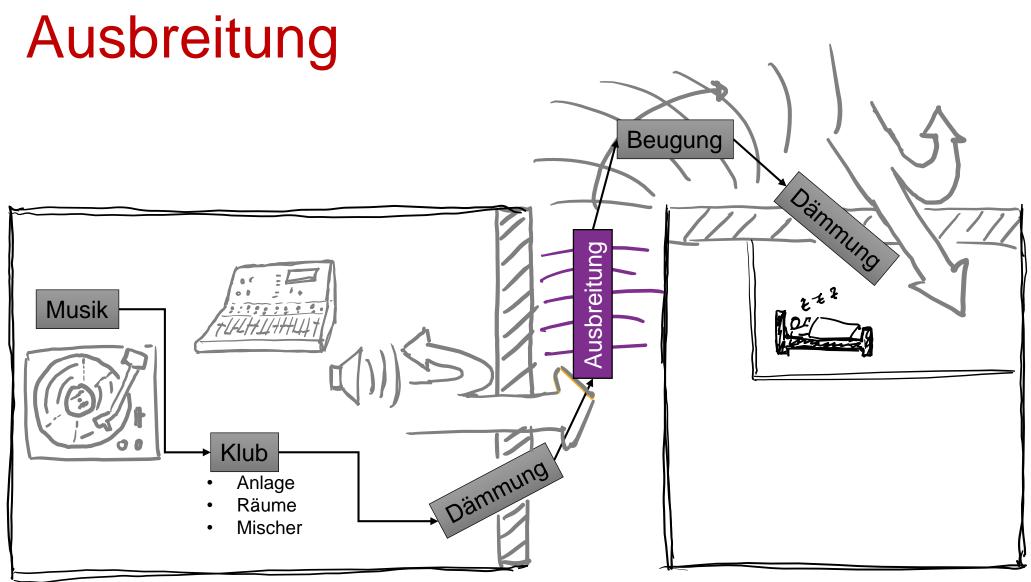


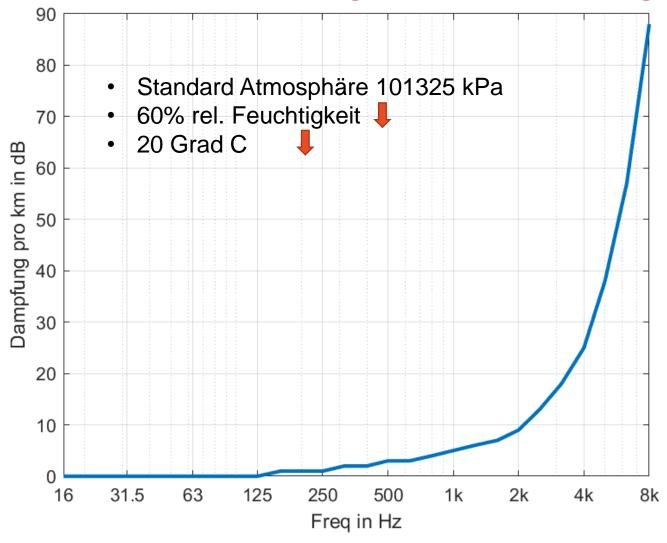
Verbesserung durch Vorsatzschalle

Berndt Zeitler I Sommerkolloquium I 26.05.2023 I Folie 14

Schalldämmung


Keine Wand



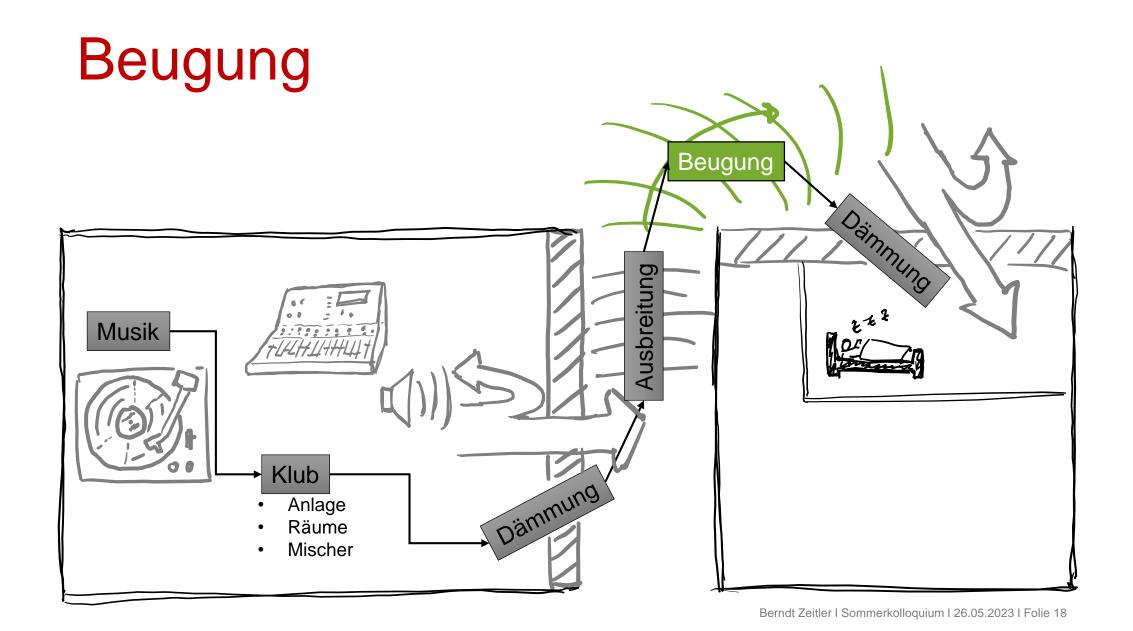


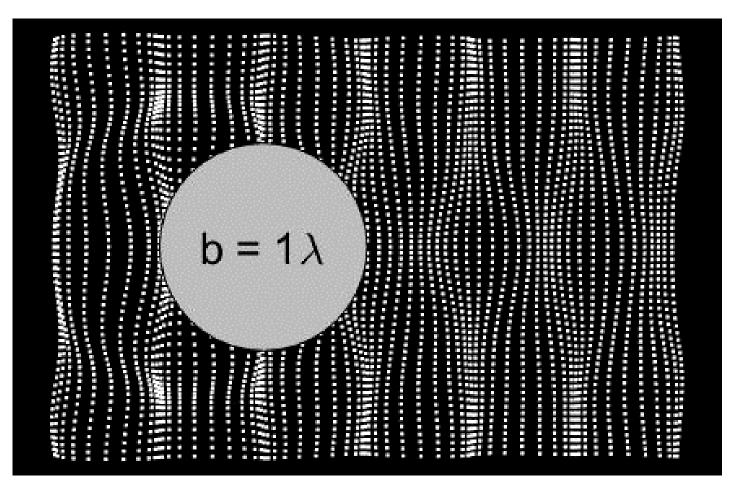
KS-Wand mit Vorsatzschale

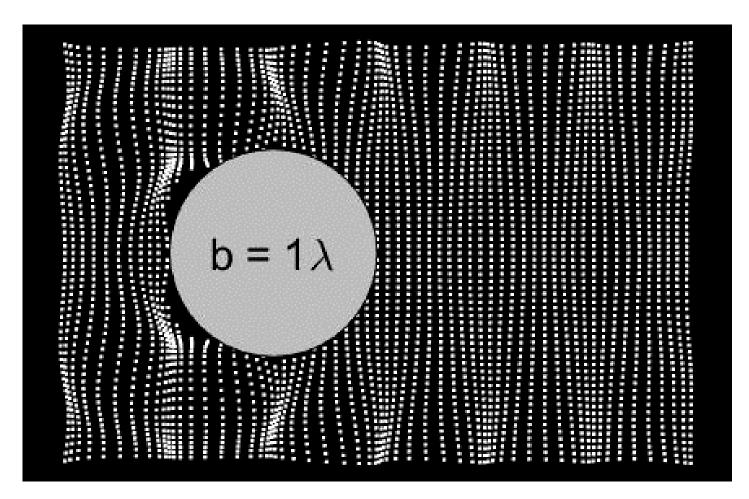
Ausbreitungsdämpfung

Donner

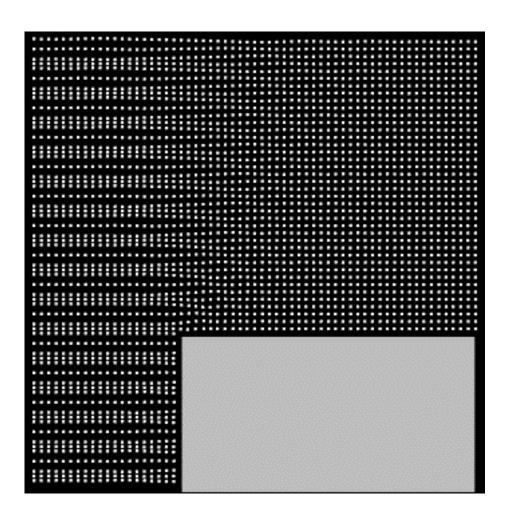
• 6km

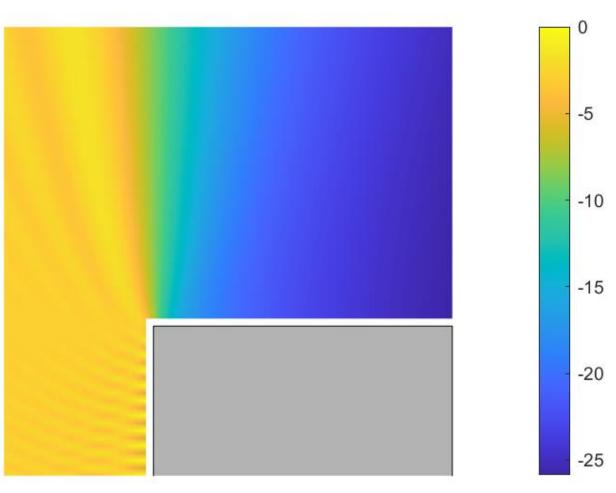



- Musik
 - 500m
 - 6km



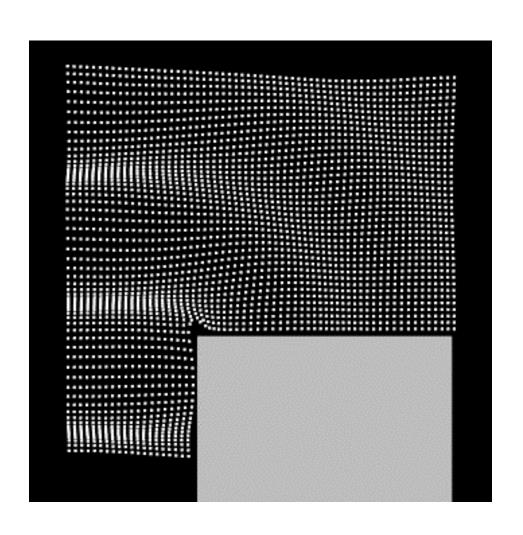
Beugung um Gegenstand

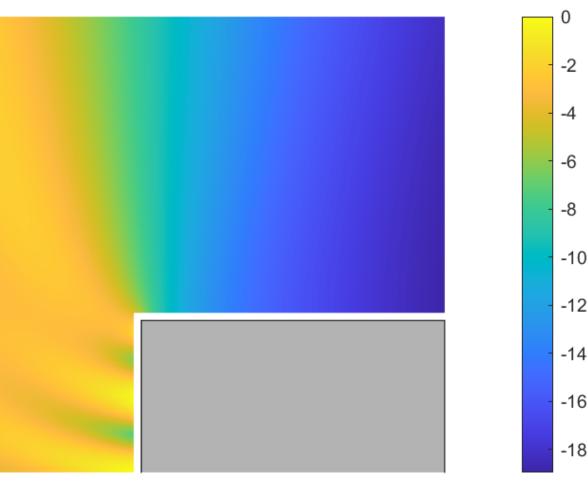

Beugung


Abhängig von Oberflächeneigenschaften (Impedanz = 0)

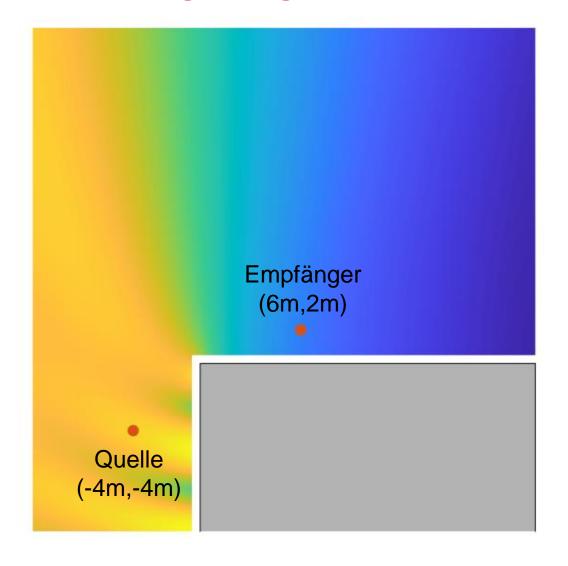
Beugung um Kante

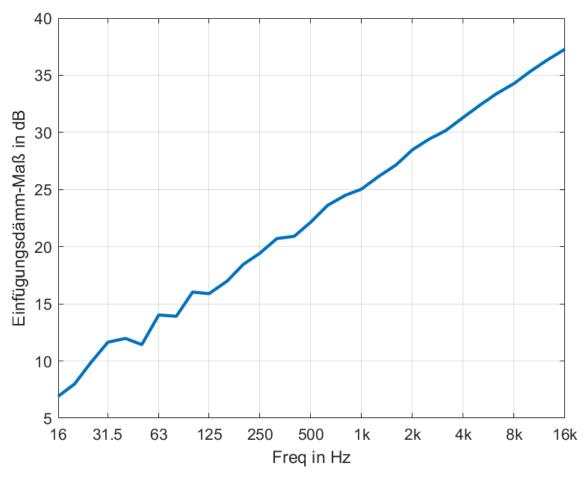
Hochfrequent

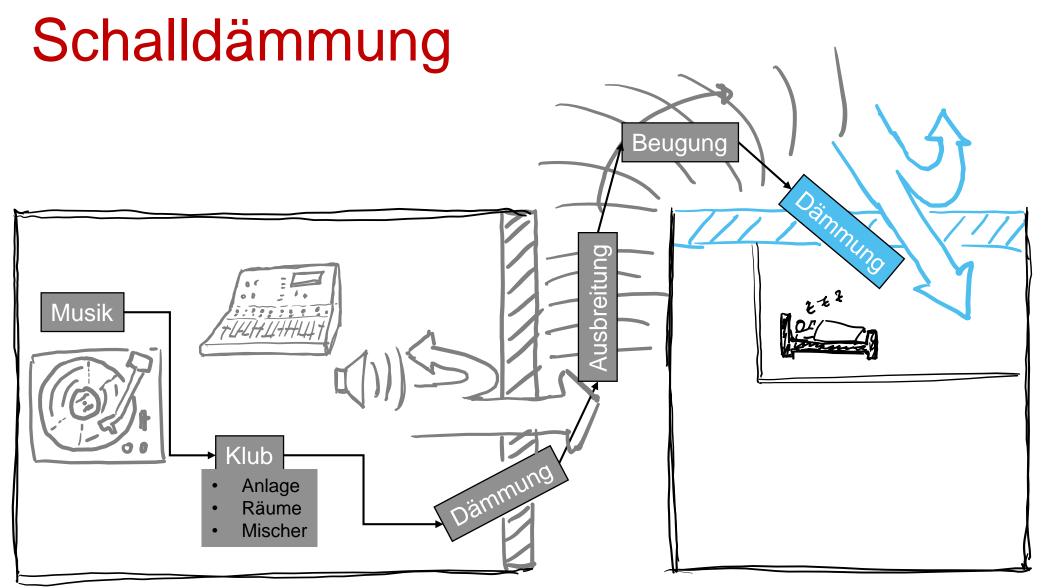




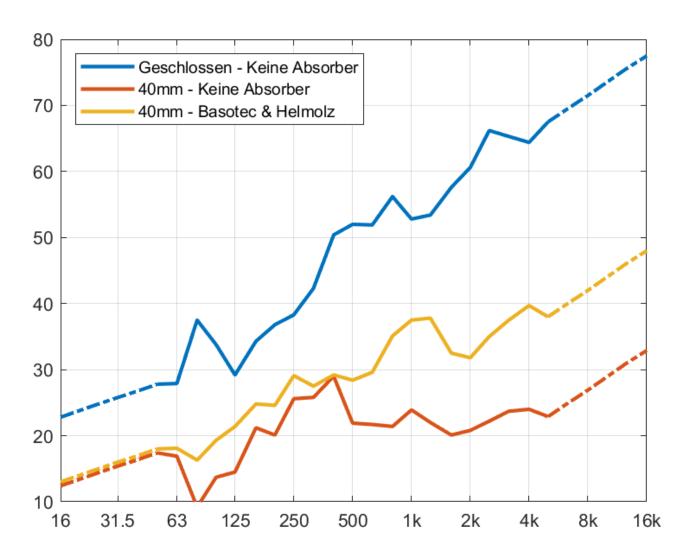
Berndt Zeitler I Sommerkolloquium I 26.05.2023 I Folie 21


Beugung um Kante


Tieffrequent



Beugung um Kante

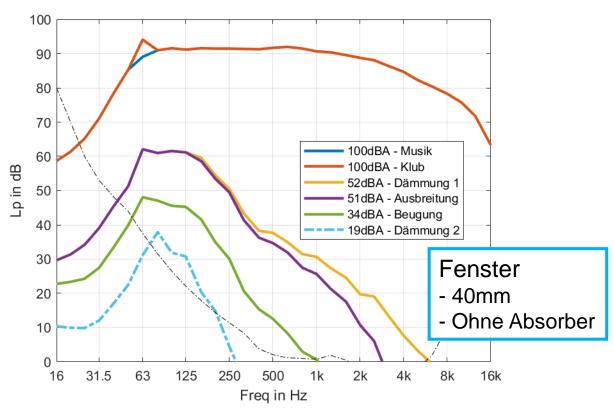


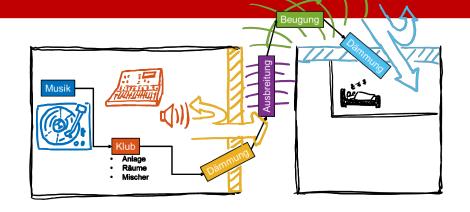
Berndt Zeitler I Sommerkolloquium I 26.05.2023 I Folie 23

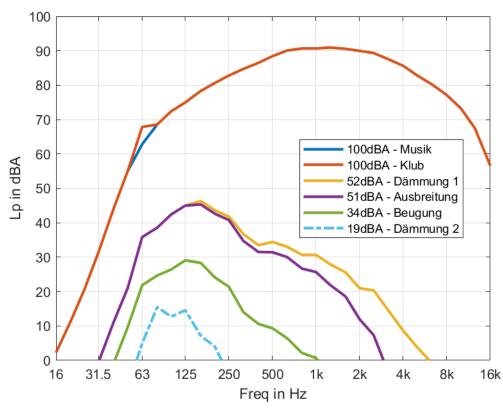
Schalldämmung (Fenster)

Geschlossen

40mm Offen Mit Absorber

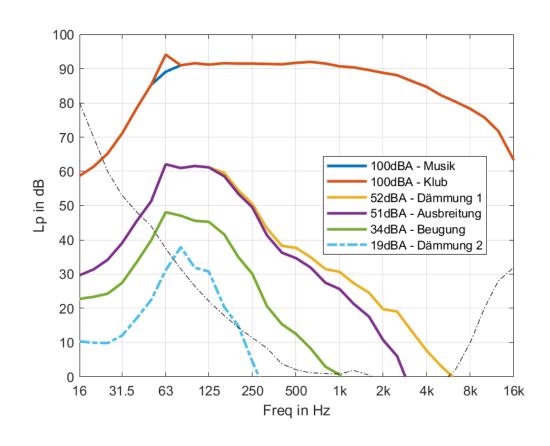


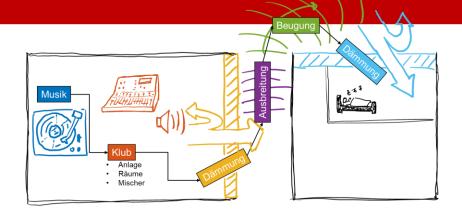

40mm Offen Ohne Absorber



Berndt Zeitler I Sommerkolloquium I 26.05.2023 I Folie 25

Zusammenfassung





Zusammenfassung

Maßnahmen:

- Klub
 - Absorber
 - EQ und Limiter (frequenzabhäng)
- Schalldämmung
 - Masse
 - Vorsatzschale (f_R < 30Hz)
- Ausbreitung / Beugung
 - Absorption / Impedanz
 - Aktiv (DTU Kopenhagen, d&b audio)

Die unaufhaltbaren tiefen Frequenzen in der Klubkultur

VIELEN DANK!

Berndt Zeitler, HFT Stuttgart

Quellenangaben

- Brüel & Kjaer, Technical Review, No. 1 Human Body Vibrations, 1982
- Möser, Technische Akustik, Springer 10. Auflage, 2015
- ISO 9613-1, Attenuation of sound during propagation outdoors, 1993
- Jonas Brunskog et. al., Full-scale outdoor concert adaptive sound field control, Proceedings 23 ICA, 2019
- Berndt Zeitler, Martin Schneider, Warum die tiefen Frequenzen der Klubkultur Schwierigkeiten bereiten, DAGA 2023, Hamburg, 2023

https://pub.dega-akustik.de/DAGA_2023/data/index.html

Musiktitel

		Eric_Clapton-			Muddy_Waters-	
Blues	BB_King-The_Thrill_Is_Gone	Before_You_Accuse_Me	Eric_Clapton-Tears_in_Heaven	John_Lee_Hooker-Boogie_Chillen	Hoochie_Coochie_Man	
	Charley_Pride-		Garth_Brooks-			
Country	Kiss_an_Angel_Good_Mornin	Dolly_Parton-Jolene	_Friends_In_Low_Places	George_Jones-Choices	Johnny_Cash-I_Walk_the_Line	
					Tocotronic-	
				The_Chemical_Brothers-	Aber_hier_leben,_nein_danke_(Of	
Elektro	Faithless-Insomnia	Fatboy_Slim-Praise_You	Moby_Porcelain-Official_video	Block_Rockin_Beats	icial_Video)	
		Deep_Purple-				The_Jimi_Hendrix_Experience-
Hardrock	ACDC-thunderstruck	Smoke_on_the_Water	Led_Zeppelin-Whole_Lotta_Love	Queen-Bohemian_Rhapsody	Steppenwolf-Born_To_Be_Wild	Purple_Haze
		Deep_Purple-				
HeavyMetal	Black_Sabbath-War_Pigs	Smoke_On_The_Water	Iron_Maiden-The_Trooper	Judas_Priest-Breaking_The_Law	Matalica-Master_of_Puppets	
НірНор	Cardi_B-Bodak_Yellow	Eminem-Lose_Yourself_[HD]	Grandmaster_Flash-The_Message	Public_Enemy-Fight_The_Power	RUN_DMC-Sucker_MCs	
		Ella_Fitzgerald_Louis_Armstrong-			Stan_Getz_Joao_Gilberto-	
Jazz	Dave_Brubeck-Take_Five	Summertime	Miles_Davis-So_What	Sarah_Vaughan-I_Got_Rhythm	The_Girl_From_Ipanema	
	Bach-		Haydn-Symphonie_94-Satz1-NYP-			
Klassik	Toccata_and_Fugue_in_D_Minor	Beethoven-Für_Elise	Bernstein	Mozart-Eine_Kleine_Nachtmusik		
				Judy_Garland-		
			Harry_Richman_Earl_Burnett_Orc	Somewhere_Over_The_Rainbow_	The_Searchers-	
Oldie	Elvis-Cant_Help_Falling_In_Love	Pennies_from_Heaven	h-Puttin_on_the_Ritz	1939	Needles_And_Pins	
					Police-	
				Phil_Collins-	Every_Little_Thing_She_Does_Is_	
Pop		Bee_Gees-Saturday_Night_Fever	Michael_Jackson-Beat_It	Dance_Into_The_Light		The_Beatles-come_together
	Dead_Kennedys-				The_Stooges-	
Punk	California_Uber_Alles	 	Ramones-Blitzkrieg_Bop	Sex_Pistols-Anarchy_In_The_UK	I_Wanna_Be_Your_Dog	
		Boby_McFerrin-				
Reggae	Bob_Marley-Sun_is_Shining		3	Sister_Nancy-BAM_BAM	The_Paragons-The_Tide_Is_High	
			Nick_Cave-The_Bad_Seeds-	The_Jimi_Hendrix_Experience-	The_Rolling_Stones-	The_Who-
Rock	Bruce_Springsteen-Born_to_Run			Purple_Haze	Beast_Of_Burden	Wont_Get_Fooled_Again
Ska	Aeronauten-Männer	Dance_Hall_Crashers-Lost_Again	King_Prawn-Survive	Monkeys-Mad_Caddies	The_Aquabats-Super_Rad	
		Barry_White-				
		Cant_Get_Enough_Of_Your_Love		James_Brown-	The_Supremes-	Tower_of_Power-
Soul	Aretha_Franklin-Respect		Hot_Chocolate-You_Sexy_Thing	Please_Please	You_Keep_Me_Hangin_On	Diggin'_On_James_Brown
	CC_Music_Factory-	D.A.V.EThe_Drummer-				Rhythm_Is_Rhythm-
Techno	Gonna_Make_You_Sweat	Look_What_Weve_Become	Inner_City-Good_Life	Model_500-NO_UFOS	Paul_Kalkbrenner-Sky_And_Sand	Strings_Of_Life

Hochschule für Technik Stuttgart

Sommerkolloquium Bauphysik 2023

Nachhaltigkeit und Bauphysik

Mathis Evers B. Eng. Krämer-Evers Bauphysik GmbH & Co. KG

Klimaschutz und Nachhaltigkeit ist in aller Munde, doch wie lässt sich dieser Aspekt in das ohnehin geladene Spannungsfeld der Baubranche integrieren? Können scheinbar gegensätzliche Anforderungen wie ökologische und ökonomische Aspekte koexistierten oder sich daraus Synergien ergeben? Ein Einstiegsvortrag in die verschiedenen Aspekte der Nachhaltigkeit unter dem Gesichtspunkt der generationengerechten Klimaverantwortung.

Leider gibt es zu diesem Vortrag keine Unterlagen