Software Modeling of FLATCON® CPV Systems

Tobias Gerstmaier, Sascha van Riesen, Andreas Gombert
Concentrix Solar GmbH, Bötzinger Straße 31, 79111 Freiburg, Germany
T: +49 (0)761 / 214 108 42, email: tobias.gerstmaier@concentrix-solar.de

André Mermoud, Thibault Lejeune
University of Geneva, ISE - Group Energy / FOREL, Switzerland
Eric Duminil, zafh.net, Stuttgart University of Applied Sciences, Germany

INTRODUCTION

• By introducing a Utilization Factor (UF) this poster presents a way of making standard PV software compatible with FLATCON® CPV
• CPV has to offer the same kind of yield predictability as flat plate PV
• PV simulation programs currently do not consider the peculiarities of CPV like the influence of the DNI spectrum

SIMULATION OF THE DNI SPECTRUM

• The current of the III-V multi-junction cells depends on the DNI spectrum due to the serial interconnection of the sub cells
• The characteristic figure Y quantifies the ‘red’ or ‘blue’ emphasis of a spectrum:

\[Y = \frac{R_{\text{sun, em}}}{R_{\text{sun, com}}} = \int \frac{R_{\text{em, sun}}(\lambda) T(\lambda) \ SR_{\lambda}(\lambda) d\lambda}{\int R_{\text{com, sun}}(\lambda) T(\lambda) \ SR_{\lambda}(\lambda) d\lambda} \]

• ‘Blue’ emphasized spectra result in \(Y > 1 \), ‘red’ emphasized spectra result in \(Y < 1 \)

SUMULATION OF THE DNI SPECTRUM (CONTINUED)

• The SMARTS2 algorithm was evaluated and proved to be useful for detailed assessments, but not necessary for the daily use
• The spectral emphasis Y can be deduced from a linear fit against the air mass with sufficient accuracy

CONCLUSION

• A Utilization Factor (UF) function is defined which depends on air mass, DNI and ambient temperature. The coefficients \(c_1 \), \(c_2 \) and \(c_3 \) are adjusted by means of error minimization:

\[UF(AM, DNI, T_{ambi}) = c_1 \cdot uf(AM) + c_2 \cdot uf(DNI) + c_3 \cdot uf(T_{ambi}) \]

The authors of this poster would like to thank Gerhard Pefanz from Fraunhofer ISE, Germany for fruitful discussions and support.
This work has been supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (CPVGen2 project, No. 0327662A).