Inhaltsverzeichnis

Grundstudium

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1</td>
<td>5</td>
</tr>
<tr>
<td>Diskrete Mathematik</td>
<td>6</td>
</tr>
<tr>
<td>Einführung in die Informatik</td>
<td>7</td>
</tr>
<tr>
<td>Programmieren 1</td>
<td>9</td>
</tr>
<tr>
<td>Betriebswirtschaftslehre</td>
<td>10</td>
</tr>
<tr>
<td>Arbeitstechniken im Studium</td>
<td>12</td>
</tr>
<tr>
<td>Fremdsprache</td>
<td>14</td>
</tr>
<tr>
<td>Mathematik 2</td>
<td>16</td>
</tr>
<tr>
<td>Lineare Algebra</td>
<td>17</td>
</tr>
<tr>
<td>Programmieren 2</td>
<td>19</td>
</tr>
<tr>
<td>Informatik-Projekt 1</td>
<td>21</td>
</tr>
<tr>
<td>Internetprogrammierung</td>
<td>24</td>
</tr>
</tbody>
</table>

Hauptstudium

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenstrukturen und Algorithmen</td>
<td>26</td>
</tr>
<tr>
<td>Software-Technik</td>
<td>28</td>
</tr>
<tr>
<td>Betriebssysteme</td>
<td>31</td>
</tr>
<tr>
<td>Theoretische Informatik</td>
<td>33</td>
</tr>
<tr>
<td>Datenbanksysteme</td>
<td>35</td>
</tr>
<tr>
<td>Programmieren 3</td>
<td>37</td>
</tr>
<tr>
<td>Technische Informatik</td>
<td>39</td>
</tr>
<tr>
<td>IT-Sicherheit</td>
<td>41</td>
</tr>
<tr>
<td>Kommunikationssysteme</td>
<td>43</td>
</tr>
<tr>
<td>Betreutes Praktisches Studienprojekt</td>
<td>45</td>
</tr>
<tr>
<td>Präsentationstraining</td>
<td>46</td>
</tr>
<tr>
<td>Mensch-Maschine-Kommunikation</td>
<td>47</td>
</tr>
<tr>
<td>Informatik-Projekt 2</td>
<td>49</td>
</tr>
<tr>
<td>Seminar</td>
<td>51</td>
</tr>
<tr>
<td>Betriebspsychologie</td>
<td>52</td>
</tr>
<tr>
<td>Recht</td>
<td>54</td>
</tr>
<tr>
<td>Interdisziplinäres Projekt</td>
<td>56</td>
</tr>
<tr>
<td>Bachelor-Thesis</td>
<td>58</td>
</tr>
</tbody>
</table>

Modul im Wahlpflicht Informatik 1 - 5

Bereich Kerninformatik

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compilerbau</td>
<td>59</td>
</tr>
<tr>
<td>Formale Sprachen</td>
<td>61</td>
</tr>
<tr>
<td>Automatische Sprachverarbeitung</td>
<td>63</td>
</tr>
<tr>
<td>Ubiquitous Computing</td>
<td>65</td>
</tr>
<tr>
<td>Bildverarbeitung</td>
<td>67</td>
</tr>
<tr>
<td>Algorithmische Geometrie</td>
<td>69</td>
</tr>
<tr>
<td>High Performance Computing</td>
<td>71</td>
</tr>
<tr>
<td>Enterprise Architecture Management</td>
<td>73</td>
</tr>
<tr>
<td>Simulation</td>
<td>75</td>
</tr>
<tr>
<td>Reaktive Sicherheit</td>
<td>77</td>
</tr>
<tr>
<td>Soft Computing</td>
<td>79</td>
</tr>
<tr>
<td>Sondermodul Kerninformatik</td>
<td>80</td>
</tr>
</tbody>
</table>
Bereich Angwandte Informatik

Unternehmenssoftware .. 81
eCommerce .. 83
Geo-Visualisierung .. 85
Sondermodul Angewandte Informatik .. 87

Module im Wahlpflichtmodul Mathematik

Statistik .. 88
Numerik .. 90
Operations Research .. 91
Sondermodul Mathematik .. 92
Grundstudium

Mathematik 1

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Mathematik 1</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MAT 1</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Mathematik 1</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten der Fachgruppe Mathematik</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS:</td>
<td>5</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 85 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>• Fähigkeit zu mathematischem, formalem, strukturiertem und systematischem Denken und Arbeiten</td>
</tr>
<tr>
<td></td>
<td>• Mathematisches Grundwissen und mathematische Fertigkeiten für technische Anwendungen</td>
</tr>
<tr>
<td></td>
<td>• Formalisieren von anwendungsbezogenen Aufgaben</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Grundbegriffe</td>
</tr>
<tr>
<td></td>
<td>• Lineare Gleichungssysteme und Matrizenrechnung</td>
</tr>
<tr>
<td></td>
<td>• Vektorrechnung</td>
</tr>
<tr>
<td></td>
<td>• Elementare Funktionen und ihre Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>• Mathematischer Unendlichkeitsbegriff</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Klausur</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Overhead-Projektor, Beamer, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>• Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg-Verlag</td>
</tr>
<tr>
<td></td>
<td>• Rießinger: Mathematik für Ingenieure, Springer-Verlag</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Diskrete Mathematik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Diskrete Mathematik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DIM</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Diskrete Mathematik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Bauer, Prof. Dr. Schneider</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsentstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Vertrautheit mit abstrakten mathematischen Strukturen (Mengen, Abbildungen)
• Kenntnisse über mathematische Schlussweisen (Logik, Beweismethoden, Induktion) und algorithmische Lösungsansätze
• Kenntnisse über Arithmetik der natürlichen Zahlen |
| Inhalt: | • Mengen und Abbildungen
• Induktion und Rekursion
• Elemente der Zahlentheorie
• Kombinatorik
• Relationen
• Graphen |
| Prüfungsvorleistung: | Studienarbeit |
| Leistungsnachweis: | Kein |
| Prüfungsleistung: | Klausur (90 Minuten) |
| Medienformen: | Tafel, Overhead-Projektor, Moodle |
| Literatur: | • Aigner: Diskrete Mathematik, Vieweg Verlag
• Hoggarty: Diskrete Mathematik für Informatiker, Addison-Wesley
• Rosen: Discrete Mathematics and its Applications, McGraw-Hill |
| Software: | Keine |
Einführung in die Informatik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die Informatik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EIF</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>• Grundlagen der Informatik</td>
</tr>
<tr>
<td></td>
<td>• Rechnerpraxis</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Homberger</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten der Fachgruppe Informatik</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4 (2 + 2)</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Informatik</td>
<td>34 h</td>
</tr>
<tr>
<td>Rechnerpraxis</td>
<td>34 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 (3 + 2)</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Grundlagen der Informatik</td>
</tr>
<tr>
<td></td>
<td>Verstehen grundlegender Konzepte</td>
</tr>
<tr>
<td></td>
<td>• der Informatik</td>
</tr>
<tr>
<td></td>
<td>• der Informationsdarstellung</td>
</tr>
<tr>
<td></td>
<td>• des Rechnens mit Binärzahlen</td>
</tr>
<tr>
<td></td>
<td>• der Realisierung und Optimierung Boolescher Funktionen</td>
</tr>
<tr>
<td></td>
<td>Rechnerpraxis</td>
</tr>
<tr>
<td></td>
<td>• Verständnis für grundsätzliche Konzepte der Betriebssystemklasse Unix/Linux</td>
</tr>
<tr>
<td></td>
<td>• Praktische Grundkenntnisse im Umgang mit Unix/Linux</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit, unter Unix- bzw. Linux-Betriebssystemen als Benutzer/in und als Softwareentwickler/in zu arbeiten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen der Informatik</td>
</tr>
<tr>
<td></td>
<td>• Bereiche der Informatik</td>
</tr>
<tr>
<td></td>
<td>• Informationsdarstellung</td>
</tr>
<tr>
<td></td>
<td>• Zahlendarstellung</td>
</tr>
<tr>
<td></td>
<td>• Rechnen mit Binärzahlen</td>
</tr>
<tr>
<td></td>
<td>• Boolesche Algebra</td>
</tr>
<tr>
<td></td>
<td>• Digitale Logik</td>
</tr>
<tr>
<td>Hardware-Komponenten eines Computers</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Vom Programm zum Maschinenprogramm</td>
<td></td>
</tr>
<tr>
<td>Rechnerpraxis</td>
<td></td>
</tr>
<tr>
<td>Laborpraktikum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsvorleistung:</th>
<th>Studienarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Overhead-Projektor, Beamer, Rechnervorführung, Moodle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
<th>Grundlagen der Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gumm, Sommer: Einführung in die Informatik, Oldenburg Verlag</td>
</tr>
<tr>
<td></td>
<td>Herold, Lurz, Wohlrab: Grundlagen der Informatik, Pearson Verlag</td>
</tr>
<tr>
<td></td>
<td>Staab: Logik und Algebra, Oldenbourg Verlag</td>
</tr>
<tr>
<td>Rechnerpraxis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glass, Ables: UNIX for Programmers and Users, Prentice Hall</td>
</tr>
</tbody>
</table>

| Software: | Betriebssystem Solaris / Linux |
Programmieren 1

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Programmieren 1</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PRO 1</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Programmieren 1</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten der Fachgruppe Informatik</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>6</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 102 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Fähigkeit zur Erstellung einfacher Programme mit Ein- und Ausgabe
• Kenntnis der Grundlagen des objektorientierten Programmierens
• Transformation von Problemen in Java-Programme
• Kenntnisse über die wesentlichen Klassen der Java-Laufzeitumgebung
• Benutzung einer IDE für den Entwurf, die Übersetzung, das Ausführen und Debugging eines Java-Programms |
| Inhalt: | • Vom Problem zum Programm
• Elementare Java-Kontrollstrukturen
• Objektorientierte Programmierung in Java
• Die wichtigsten Klassen der Java Standard Edition (Teil 1) |
| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Studienarbeit |
| Prüfungsleistung: | Keine |
| Medienformen: | Beamer, Rechnervorführung, Screencasts, Moodle |
| Literatur: | • Heusch u. a.: RRZN Skript: Java – Band 1: Grundlagen und Einführung, Regionales Rechenzentrum für Niedersachsen / Universität Hannover |
| Software: | • Java SDK,
http://www.oracle.com/technetwork/java/index.html |
Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BWL</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Elvira Mink, Katja Stamer</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Verstehen von grundlegenden betriebswirtschaftlichen Zusammenhängen
 | • Erkennung grundlegender betrieblicher Investitionsentscheidungen und Formulierung von Lösungsansätzen
 | • Identifikation und Umsetzung theoretischer und praxisbezogener Lösungsverfahren für betriebswirtschaftliche Fragestellungen
 | • Grundkenntnisse, die zur kaufmännischen Leitung und Steuerung eines Unternehmensbereichs oder Unternehmens notwendig sind |
| Inhalt: | • Einführung in die BWL
 | • Grundzüge einer marktorientierten Unternehmensführung
 | • Grundlagen Marktforschung und Marketing
 | • Grundlagen internes/externes Rechnungswesen und Controlling
 | • Grundlagen Investition und Finanzierung
 | • Grundlagen Rechtsformen
<pre><code> | • Grundlagen Steuern |
</code></pre>
<p>| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Kein |
| Prüfungsleistung: | Klausur (90 Minuten) |</p>
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Tafel, Beamer, Moodle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Albach: Allgemeine Betriebswirtschaftslehre, Gabler Verlag</td>
</tr>
<tr>
<td></td>
<td>• Schierenbeck: Grundzüge der Betriebswirtschaftslehre, Oldenbourg Verlag</td>
</tr>
<tr>
<td></td>
<td>• Schierenbeck, Wöhle: Grundzüge der Betriebswirtschaftslehre Übungsbuch, Oldenbourg Verlag</td>
</tr>
<tr>
<td></td>
<td>• Wöhe, Döring: Einführung in die Allgemeine Betriebswirtschaftslehre, Vahlen Verlag</td>
</tr>
<tr>
<td></td>
<td>• Wöhe, Kaier, Döring: Übungsbuch zur Einführung in die allgemeine Betriebswirtschaftslehre, Vahlen Verlag</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Arbeitstechniken im Studium

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Arbeitstechniken im Studium</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>AIS</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Arbeitstechniken im Studium</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Lehrbeauftragte des Didaktikzentrums</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 26 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Fähigkeit, die persönliche Lern- und Arbeitssituation organisieren und zeitlich planen zu können mit dem Ziel, sinnvoll und effektiv zu studieren.
 • Zielgerichtetes Lesen, Strukturierung von Information, Entwicklung einer folgerichtigen Argumentation, gezielte Überarbeitung von wissenschaftlichen Texten |
| Inhalt: | • Lerntechniken (Lerntypen, Persönliche Lern- und Arbeitsorganisation, Zeit- und Selbstmanagement)
 • Motivations-techniken
 • Lesetechniken
 • Kommunikationstechniken (Kommunikationsregeln, 4-Ohren-Modell, Wiederholungstechnik)
 • Techniken zum Stressabbau (Prüfungsangst, Lampenfieber)
 • Technik des Mitschreibens
 • Teamwork
 • Literaturrecherche und -bewertung
 • Planung einer wissenschaftlichen Arbeit
 • Erstellung eines wissenschaftlichen Aufsatzes |
<p>| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Studienarbeit |
| Prüfungsleistung: | Keine |</p>
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Flipchart, Metaplan, Tafel, Beamer, Modelle, Tonträger, Overhead-Projektor, Moodle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Fremdsprachen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Fremdsprache</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>FSP</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Fremdsprachen</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Lehrbeauftragte des Didaktikzentrums</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 50% / 50%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:
- Beherrschung Fachwortschatz Computer und Informatik
- Beherrschung der englischen Grammatik: Present, past and future tenses, prepositions, some / any, since / for, question tags, adjectives and adverbs
- Umgang in der englischsprachigen Informatik- und Geschäftswelt

Inhalt:
- Telefonieren, Briefe und E-Mails schreiben
- Diskussion über spezifische Themen wie Internet, Linux, Computer Geschichte, E-Commerce usw.
- Tipps und Tricks im Bewerbungsprozess
- Erstellung von englischen Bewerbungen (Lebenslauf und Begleitbrief)
- Vorbereitung auf englische Vorstellungsgespräche
- Verstehen von englischen Stellenausschreibungen
- Halten englischer Präsentation

Prüfungsvorleistung:
Keine

Leistungsnachweis:
Studienarbeit

Prüfungsleistung:
Keine

Medienformen:
Tafel, Tonträger, Moodle

Literatur:
- Murphy: English Grammar in Use, Cambridge/Klett-Verlag
- Schürmann, Mullins: Englische Bewerbungsunterlagen, Eichborn Verlag
<table>
<thead>
<tr>
<th>Software:</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Website der FH Hannover (www.fh-hannover.de/usa)</td>
</tr>
<tr>
<td></td>
<td>• Website von www.travelworks.de (Hilfe bei der Suche nach Praxisstellen in den USA)</td>
</tr>
</tbody>
</table>
Mathematik 2

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Mathematik 2</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MAT2</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Mathematik 2</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten der Fachgruppe Mathematik</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>5</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 85 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Mathematik 1</td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:
- Fähigkeit zu mathematischen, formalen, strukturierten und systematischen Denken und Arbeiten
- Mathematisches Grundwissen und mathematische Fertigkeiten für technische Anwendungen
- Formalisieren von anwendungsbezogenen Aufgaben

Inhalt:
- Differenzialrechnung von reellen Funktionen einer Veränderlichen
- Integralrechnung von reellen Funktionen einer Veränderlichen
- Gewöhnliche Differenzialgleichungen
- Elemente der Statistik

Prüfungsvorleistung:
- Studienarbeit

Leistungsnachweis:
- Kein

Prüfungsleistung:
- Klausur (120 Minuten)

Medienformen:
- Tafel, Beamer, Moodle

Literatur:
- Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 1, Vieweg-Verlag
- Rießinger: Mathematik für Ingenieure, Springer-Verlag

Software:
- Keine
Lineare Algebra

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Lineare Algebra</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>LIA</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Lineare Algebra</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Harms, Prof. Dr. Schneider, Prof. Dr. Wolpert</td>
</tr>
<tr>
<td>Zuordnung:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen, seminaristisches Arbeiten, Arbeiten in Gruppen (ca. 70% / 30%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h Eigenstudium: 56 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Befähigung zum Umgang mit dem Vektor- und Matrizenkalkül
• Vertiefen der Kenntnisse der Vektorrechnung im Anschauungsraum |
| Inhalt: | • Vektorraum
• Affiner Punktraum
• Matrizenrechnung
• Lineare Abbildungen
• Einführung in die Eigenwerttheorie (Eigenwerte, Eigenvektoren)
• Affine Abbildungen
• Anwendungen der Vektor- und Matrizenrechnung (Geraden und Ebenen im Raum, Projektionen, homogene Koordinaten) |
| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Kein |
| Prüfungsleistung: | Klausur (60 Minuten) |
| Medienformen: | Tafel, Beamer, Moodle |
| Literatur: | • Pareigis: Lineare Algebra für Informatiker, Springer-Verlag
• Jänich: Lineare Algebra, Springer-Verlag |
| Software: | Keine |
Programmieren 2

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Programmieren 2</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PRO2</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Programmieren 2</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten der Fachgruppe Informatik</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>6</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 50% / 50%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 102 h Eigenstudium: 108 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>7</td>
</tr>
<tr>
<td>Voraussetzungen n Studien- und Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Programmieren 1</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>• Fähigkeit zur Umsetzung komplexerer Probleme in Java-Code mit mehreren Klassen / Paketen</td>
</tr>
<tr>
<td></td>
<td>• Beschreibung von Software-Systemen mit UML und Benutzung geeigneter Werkzeuge</td>
</tr>
<tr>
<td></td>
<td>• Erstellung von Applets und GUI-Programmen</td>
</tr>
<tr>
<td></td>
<td>• Umfassende Kenntnis der Java-Klassen, besonders im Bereich Collections, JDBC, Swing, XML</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Objektorientierte Programmierung in Java</td>
</tr>
<tr>
<td></td>
<td>• Einführung in UML-Diagramme</td>
</tr>
<tr>
<td></td>
<td>• Systematisches Testen</td>
</tr>
<tr>
<td></td>
<td>• Die wichtigsten Klassen der Java Standard Edition (Teil 2)</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Rechnervorführung, Screencasts, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>• Balzert: UML 2 kompakt, Spektrum Akademischer Verlag</td>
</tr>
<tr>
<td></td>
<td>• Heusch u. a.: RRZN Skript: Java – Fortgeschrittene Techniken und APIs, Regionales Rechenzentrum für Niedersachsen / Universität Hannover</td>
</tr>
<tr>
<td></td>
<td>• RRZN Skript: XML – Grundlagen der eXtensible Markup Language, Regionales Rechenzentrum für Niedersachsen / Universität Hannover</td>
</tr>
</tbody>
</table>
Informatik-Projekt 1

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Informatik-Projekt 1</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IP 1</td>
</tr>
</tbody>
</table>
| Lehrveranstaltung: | • Software-Projekt 1
• Software-Projektmanagement |
| Studiensemester: | 2 |
| Modulverantwortliche(r): | Prof. Dr. Heusch, Prof. Dr. Höß |
| Dozent(in): | Alle Dozenten der Fachgruppe Informatik |
| Zuordnung: | Pflichtmodul im Grundstudium |
| SWS | 6 (4 +2) |
| Lehrform | Software-Projekt 1: Praktikum
Software-Projektmanagement: Vorlesung mit integrierten Übungen (ca. 65% /35%) |
| Arbeitsaufwand | Präsenzstudium:
Eigenstudium: |
| Software-Projekt 1 | 68 h
112 h |
| Software-Projektmanagement | 34 h
56 h |
| Kreditpunkte: | 9 (6 + 3) |
| Voraussetzungen nach Studien- und Prüfungsordnung | Keine |
| Empfohlene Voraussetzungen | Programmieren 1 |
| Lernziele/Kompetenzen: | Software-Projekt 1 |
| | • Implementierung eines Softwareprojekts auf Grundlage eines durch Schnittstellen, Unit-Tests und UML-Diagramme vorgegebenen Entwurfs |
| | • Selbständige Auswahl der für die Implementierung benötigten Klassen aufgrund der vorliegenden Anforderungen |
| | • Vertiefte Nutzung integrierter Entwicklungsumgebungen für große Projekte (u.a. Erstellung und Nutzung von Unit-Tests, Sourcecode-Verwaltung mit Subversion, Kontrolle von Build-Prozessen mit ant) |
| | • Fähigkeit zur Projektarbeit im Team |
| | • Erstellung einer vollständigen 3-Tier-Anwendung mit Client, Server und Datenhaltung (insg. ca. 250 Klassen) |
| Software-Projektmanagement | Erwerb von Grundkenntnissen des Projektmanagements |
| | Anwendung von grundlegenden Methoden des Projektmanagements (Vorbereitung, Planung,
<table>
<thead>
<tr>
<th>Organisation, Durchführung und Controlling von Software-Projekten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fähigkeit, erfolgreich in Projekten mitzuarbeiten sowie kleinere Projekte selbständig zu planen und durchzuführen</td>
</tr>
</tbody>
</table>

Inhalt:

Software-Projekt 1

• Präsentation der zu erstellenden Anwendung und ihrer Teile
• Stückweise Vorstellung der Aufgaben samt Hinweisen zur Lösung, u.a. aus folgenden Themengebieten: RMI, Swing, JDBC, Collections, lose Kopplung, Unit-Tests, Mockito,
• Diskussion möglicher Lösungsansätze, Vergleich der Lösungen
• Überprüfung des Projektfortschritts

Software-Projektmanagement

• Vorgehensmodelle in der Software-Entwicklung
• Projektstart und -organisation
• Projektplanung
• Projektkontrolle und -steuerung
• Personalmanagement
• Qualitätssicherung
• Risikomanagement
• Projektabnahme und -abschluss
• Reifegradmodelle

Prüfungsvorleistung: Studienarbeit

Leistungsnachweis: Kein

Prüfungsleistung: Projektarbeit

Medienformen:

Software-Projekt 1

Beamer, Overhead-Projektor, Rechnervorführung, Moodle

Software-Projektmanagement

Tafel, Folien (OHP), Beamer, Moodle

Literatur:

Software-Projektmanagement

• Hindel, Hörmann, Müller, Schmied: Basiswissen Software-Projektmanagement, dpunkt Verlag
• Wieczorek, Mertens: Management von IT-Projekten: Von der Planung zur Realisierung, Springer-Verlag
• Kuster, Huber, Lippmann, Schmid, Schneider, Witschi: Handbuch Projektmanagement, Springer-Verlag
• Aktuelle Fallbeispiele & vertiefende Spezialliteratur zu einzelnen Themenbereichen des Projektmanagements

Software:

Software-Projekt 1

• Netbeans IDE, http://www.netbeans.org
| • Java SDK,
 http://www.oracle.com/technetwork/java/index.html
• Enterprise Architect, http://www.sparxsystems.com |
Internetprogrammierung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Internet Programmierung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IPR</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Internet Programmierung</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Wanner</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Hauber, Prof. Dr. Keller, Prof. Dr. Mosler, Prof. Dr. Wanner</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Grundstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.50% / 50%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsentenzstudium: 68 h Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Rechnerpraxis</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>- haben Grundkenntnisse über Standards und Protokolle des Internets</td>
</tr>
<tr>
<td></td>
<td>- sind in der Lage, statische und dynamische Webseiten zu erstellen.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung</td>
</tr>
<tr>
<td></td>
<td>- TCP/IP – Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- HTTP und HTML</td>
</tr>
<tr>
<td></td>
<td>- Server-Side Scripting 1: CGI, Perl, SSI</td>
</tr>
<tr>
<td></td>
<td>- Client-Side Scripting: Javascript, Ajax</td>
</tr>
<tr>
<td></td>
<td>- Cascading Style Sheets</td>
</tr>
<tr>
<td></td>
<td>- Server-Side Scripting 2: PHP</td>
</tr>
<tr>
<td></td>
<td>- Integrierte Webentwicklung mit Groovy und Grails</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Overhead-Projektor, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>- Lubkowitz: Webseiten programmieren und gestalten, Galileo Press</td>
</tr>
<tr>
<td></td>
<td>- Holzinger: Basiswissen IT/Informatik – Band 3 Internet und WWW, Vogel Fachbuchverlag</td>
</tr>
</tbody>
</table>

Die Studierenden
- haben Grundkenntnisse über Standards und Protokolle des Internets
- sind in der Lage, statische und dynamische Webseiten zu erstellen.

Inhalt:
- Einführung
 - TCP/IP – Grundlagen
 - HTTP und HTML
 - Server-Side Scripting 1: CGI, Perl, SSI
 - Client-Side Scripting: Javascript, Ajax
 - Cascading Style Sheets
 - Server-Side Scripting 2: PHP
 - Integrierte Webentwicklung mit Groovy und Grails
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Koch:</td>
<td>JavaScript – Einführung, Programmierung und Referenz, dpunkt.verlag</td>
</tr>
<tr>
<td>McLaughlin:</td>
<td>Ajax von Kopf bis Fuß, O'Reilly</td>
</tr>
<tr>
<td>König:</td>
<td>Groovy in Action, Manning</td>
</tr>
<tr>
<td>Smith, Ledbrook:</td>
<td>Grails in Action, Manning</td>
</tr>
<tr>
<td>Software:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verschiedene Browser</td>
</tr>
<tr>
<td></td>
<td>Apache Webserver</td>
</tr>
<tr>
<td></td>
<td>Groovy, Grails</td>
</tr>
</tbody>
</table>
Hauptstudium

Datenstrukturen und Algorithmen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Datenstrukturen und Algorithmen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DSA</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Datenstrukturen und Algorithmen</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2.Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Coors</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Coors, Prof. Dr. Homberger</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:

Die Vorlesung vermittelt grundlegende Datenstrukturen und Algorithmen, deren Implementierung und Effizienz. Insbesondere werden folgende Fähigkeiten erworben:

- Beurteilung der Komplexität von Algorithmen,
- Sicherer Umgang mit dem Java Collection Framework
- Entwurf von Algorithmen und Auswahl geeigneter Datentypen zur Lösung konkreter Aufgaben aus der Praxis

Inhalt:

- Algorithmen und ihre Analyse
- Datenstrukturen, Abstrakte Datentypen
- Grundlegende Datentypen (Stack, Queue, Sequenz, Bäume)
- Datentypen zur Darstellung von Mengen (Hash, Suchbaum, AVL-Baum, PriorityQueue)
- Such- und Sortierverfahren
- Graphen und Graph-Algorithmen (kürzeste Wege, Traveling Salesman)
- Anwendungen (Bildsegmentierung, räumliche Suche)

Prüfungsvorleistung:

Studienarbeit

Leistungsnachweis:

Kein

Prüfungsleistung:

Klausur (120 Minuten)
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Beamer, Tafel</th>
</tr>
</thead>
</table>
| Literatur: | Güting, Dieker: Datenstrukturen und Algorithmen, Teubner
 | Goodrich, Tamassia: Data Structures and Algorithms in Java, Wiley & Sons |
| Software: | Keine |
Software-Technik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Software-Technik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SWT</td>
</tr>
</tbody>
</table>
| Lehrveranstaltung: | • Software Engineering
• Software-Modellierung |
| Studiensemester: | 3/4 (2.Studienjahr) |
| Modulverantwortliche(r): | Prof. Dr. Wanner |
| Dozent(in): | Prof. Dr. Deininger, Prof. Dr. Wanner |
| Zuordnung zum Curriculum: | Pflichtmodul im Hauptstudium |
| SWS | 6 (4 + 2) |

Lehrform

| Software Engineering
Vorlesung mit integrierten Übungen (ca. 65% / 35%)
Software-Modellierung
Vorlesung mit integrierten Übungen (ca.50% / 50%) |

Arbeitsaufwand

	Präsenzstudium:	Eigenstudium:	
	Software Engineering	68 h	82 h
	Software-Modellierung	34 h	56 h

Kreditpunkte:

| | 8 (5 + 3) |

Voraussetzungen nach Studien- und Prüfungsordnung:

Keine

Empfohlene Voraussetzungen:

Programmieren 1 und 2

Lernziele/Kompetenzen:

Software Engineering

Die Studierenden

- beherrschen die Grundlagen der Software-Technik, insbesondere Vorgehensweisen bei der Erstellung von Softwaresystemen
- können verschiedene Vorgehensmodelle, darunter die Grundmodelle und im Detail die Vorgehensmodelle Rational Unified Process (RUP), Extreme Programming (XP) und Scrum erläutern und Einsatzbereiche aufzeigen
- beherrschen grundlegende Anforderungsanalyse mit Verfahren des Requirements Engineering
- können auf Basis von Anforderungsdokumenten Aufwandsabschätzungen mit verschiedenen Verfahren (FP, COCOMO) durchführen
- beherrschen die grundlegenden Verfahren der Qualitätssicherung, insbesondere Testverfahren, Erhebung von Metriken und Anwendung von Reviewtechniken,
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorgehensmodelle (Grundmodelle, Rational Unified Process, V-Modell XT, Agile Prozesse, Scrum, XP)</td>
</tr>
<tr>
<td></td>
<td>Aufwandsabschätzungen von Softwareprojekten (FP, COCOMO, COCOMO II)</td>
</tr>
<tr>
<td></td>
<td>Qualitätssicherung</td>
</tr>
<tr>
<td></td>
<td>Testen, Vermessen von Software</td>
</tr>
<tr>
<td></td>
<td>Change- und Konfigurationsmanagement</td>
</tr>
<tr>
<td></td>
<td>Requirements Engineering</td>
</tr>
<tr>
<td></td>
<td>Architekturmodelle und Architekturentwurf</td>
</tr>
<tr>
<td>Software-Modellierung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geschäftsprozessmodellierung mittels BPMN</td>
</tr>
<tr>
<td></td>
<td>Unified Modeling Language (UML) im Detail</td>
</tr>
<tr>
<td></td>
<td>Analysemuster für die Modellierung, z.B. Actor-Role- Pattern</td>
</tr>
<tr>
<td></td>
<td>Komponentenbildung in UML</td>
</tr>
<tr>
<td></td>
<td>Generative und generische Softwareentwicklung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsvorleistung:</th>
<th>Studienarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Elektronisches Skript, Beamer, Overhead-Projektor, Rechnervorführung</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Software Engineering</td>
</tr>
<tr>
<td></td>
<td>Ludewig, Lichter: Software Engineering: Grundlagen, Menschen, Prozesse, Techniken, dpunkt.verlag</td>
</tr>
<tr>
<td></td>
<td>Reussner: Handbuch der Software-Architektur,</td>
</tr>
<tr>
<td>dpunkt.verlag</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>IBM: Rational Unified Process, Online-Dokumentation</td>
<td></td>
</tr>
<tr>
<td>Beck: eXtreme Programming, Addison-Wesley</td>
<td></td>
</tr>
<tr>
<td>Spillner, Linz: Basiswissen Softwaretest, dpunkt.verlag</td>
<td></td>
</tr>
<tr>
<td>Pohl, Rupp: Basiswissen Requirements Engineering, dpunkt.verlag</td>
<td></td>
</tr>
<tr>
<td>Boehm: Software Cost Estimation With COCOMO II, Prentice Hall PTP</td>
<td></td>
</tr>
</tbody>
</table>

Software-Modellierung

<table>
<thead>
<tr>
<th>Software-Modellierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freund, Rücker, Henninger: Praxishandbuch BPMN, Hanser Verlag</td>
</tr>
<tr>
<td>Freeman, Freeman, Sierra, Bates: Head First Design Patterns, O'Reilly & Associates</td>
</tr>
<tr>
<td>Gamma, Helms, Johnson, Vlissides: Entwurfsmuster: Elemente wiederverwendbarer objektorientierter Software, Addison-Wesley</td>
</tr>
<tr>
<td>Rupp, Queins, Zengler: UML 2 glasklar: Praxishwissen für die UML-Modellierung, Hanser Verlag</td>
</tr>
<tr>
<td>Oestereich: Die UML 2.3 Kurzreferenz für die Praxis: kurz, bündig, ballastfrei, Oldenbourg Verlag</td>
</tr>
<tr>
<td>Fowler: Analysis Patterns: Reusable Object Models, Addison-Wesley Verlag</td>
</tr>
</tbody>
</table>

Software:

<table>
<thead>
<tr>
<th>Software-Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUnit, http://www.junit.org/index.htm</td>
</tr>
<tr>
<td>Subversion, http://subversion.tigris.org</td>
</tr>
<tr>
<td>GIT, http://git-scm.com/</td>
</tr>
<tr>
<td>Zahlreiche weitere Werkzeuge für Testen und Metriken</td>
</tr>
</tbody>
</table>

Software-Modellierung

<table>
<thead>
<tr>
<th>Software-Modellierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparx Systems Enterprise Architect</td>
</tr>
</tbody>
</table>
Betriebssysteme

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Betriebssysteme</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BS</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Betriebssysteme</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2.Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Knauth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Coors, Prof. Dr. Keller, Prof. Dr. Knauth, Prof. Dr. Wanner</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS:</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform:</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% /35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 68 h Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Programmieren 1 und 2, Rechnerpraxis</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Benutzung von Betriebssystemen über Benutzerschnittstellen oder durch Programme
• Kenntnis der grundlegenden Dienste eines Betriebssystems |
| Inhalt: | • Grundlagen, Einführung und Überblick: Aufgaben eines Betriebssystems, historische Entwicklung und aktuelle Systeme, Systemaufrufe und Interrupts
• Prozesse und Threads: Konzepte, Multitasking, Scheduling, Kontextwechsel
• Hauptspeicherverwaltung: Virtueller Speicher, Paging und Swapping, Segmentierung
• Dateien und Dateisysteme: Hierarchische Dateisysteme, Speicherverwaltung in Dateisystemen, Beispiele wie FAT, NTFS, Unix-I-Nodes
• Synchronisation und Kommunikation von Prozessen |
| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Kein |
| Prüfungsleistung: | Mündliche Prüfung (20 Minuten) |
| Medienformen: | Beamer, Rechnervorführung, Moodle |
| Literatur: | • Mandl: Grundkurs Betriebssysteme, Vieweg Verlag
• Tanenbaum: Moderne Betriebssysteme, Pearson Studium |
| Software: | Keine |
Theoretische Informatik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Theoretische Informatik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>THI</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Theoretische Informatik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2.Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Heusch</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Heusch, Prof. Dr. Knauth, Prof. Dr. Padó</td>
</tr>
<tr>
<td>Zuordnung:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform:</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% /35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Programmieren 1 und 2</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>• Grundbegriffe der Theoretischen Informatik</td>
</tr>
<tr>
<td></td>
<td>• Wissen um prinzipielle Schranken bestimmter Berechnungsmodelle</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur Nutzung von Techniken der Theoretischen Informatik in praktischen Anwendungen</td>
</tr>
<tr>
<td></td>
<td>• Erkennung und Bearbeitung kombinatorisch harter Optimierungsprobleme</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Grundbegriffe der Theoretischen Informatik</td>
</tr>
<tr>
<td></td>
<td>• Endliche Automaten und Reguläre Sprachen</td>
</tr>
<tr>
<td></td>
<td>• Kellerautomaten und Kontextfreie Sprachen</td>
</tr>
<tr>
<td></td>
<td>• Turingmaschinen und rekursiv aufzählbare Sprachen</td>
</tr>
<tr>
<td></td>
<td>• Einführung in die NP-Vollständigkeit</td>
</tr>
<tr>
<td></td>
<td>• Primitive rekursive und μ-rekursive Funktionen</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Rechnervorführung, Lehrprogramme</td>
</tr>
<tr>
<td>Literatur:</td>
<td>• Hopcroft, u.a.: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Pearson Studium</td>
</tr>
<tr>
<td></td>
<td>• Schöning: Theoretische Informatik – kurz gefasst, Spektrum Akademischer Verlag</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>http://javacc.java.net/doc/docindex.html, JavaCC</td>
<td></td>
</tr>
</tbody>
</table>
Datenbanksysteme

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Datenbanksysteme</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DBS</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Datenbanksysteme</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Koch, Prof. Dr. Kramer</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien-</td>
<td>Keine</td>
</tr>
<tr>
<td>und Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Programmieren 1 und 2</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• verstehen die grundsätzliche Funktionalität sowie die Einsatzmöglichkeiten von Datenbanken und sind in der Lage,</td>
</tr>
<tr>
<td></td>
<td>• SQL-Anfragen zu programmieren sowie</td>
</tr>
<tr>
<td></td>
<td>• relationale Datenbanken zu modellieren.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen</td>
</tr>
<tr>
<td></td>
<td>• Datenbankentwurf, Entity-Relationship-Modell</td>
</tr>
<tr>
<td></td>
<td>• Physische Datenorganisation</td>
</tr>
<tr>
<td></td>
<td>• Relationales Datenbankmodell</td>
</tr>
<tr>
<td></td>
<td>• Relationale Anfragesprache SQL</td>
</tr>
<tr>
<td></td>
<td>• Datenintegrität</td>
</tr>
<tr>
<td></td>
<td>• Transaktionsverwaltung und Synchronisierung</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Moodle, Skript, Folien, Rechnervorführung, Overhead-Projektor, Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Connolly, Begg: Database Systems: A Practical Approach to Design, Implementation and Management, Addison-Wesley</td>
</tr>
<tr>
<td></td>
<td>Elmasri, Navathe: Grundlagen von Datenbanksystemen,</td>
</tr>
<tr>
<td>Pearson Studium</td>
<td>Kemper, Eickler: Datenbanksysteme: Eine Einführung, Oldenbourg-Verlag</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Software:</td>
<td>Datenbanksystem MySQL, www.mysql.org</td>
</tr>
</tbody>
</table>
Programmieren 3

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbeschreibung:</td>
<td>Programmieren 3</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PRO3</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Programmieren 3</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Heusch</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Coors, Prof. Dr. Deininger, Prof. Dr. Heusch, Prof. Dr. Wanner</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% /35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Programmieren 1 und 2</td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:
- Fähigkeit zur Implementierung grösserer Programme (inkl. GUI) in C und C++
- Kenntnisse bekannter C++ Frameworks (Qt, wxWidgets, Boost)
- Nutzung von Grafikkarten für rechenintensive Operationen (CUDA)

Inhalt:
- Grundlegende Elemente in C und C++
- Syntaktische Gemeinsamkeiten zwischen C, C++ und Java
- Syntaktische Unterschiede zwischen C, C++ und Java
- Systemübergreifende Programmierung mit C und C++
- Die Klassen der STL
- Portable Programmierung mit Boost und wxWidgets
- Einführung in CUDA

Prüfungsvorleistung:
Keine

Leistungsnachweis:
Projektarbeit

Prüfungsleistung:
Keine

Medienformen:
Beamer, Overhead-Projektor, Rechnervorführung

Literatur:
- Kernighan, Ritchie: Programmieren in C - ANSI C, Hanser Verlag
- Stroustrup: Die C++-Programmiersprache, Addison-Wesley
| Schäling: Die Boost C++ Bibliothek, XML Press |
| Sanders, Kandrot: CUDA by Example: An Introduction to General-Purpose GPU Programming, Addison-Wesley |
| Smart, Hock: Cross-Platform GUI Programming with wxWidgets, Prentice Hall |
| Heusch: RRZN Skript: C++ für Java Programmierung, Regionales Rechenzentrum Niedersachsen/Universität Hannover |

Software: Keine
Technische Informatik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Informatik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TEC</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Technische Informatik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2.Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Knauth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Knauth, Prof. Dr. Heusch, Prof. Dr. Keller</td>
</tr>
<tr>
<td>Zuordnung:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.50% / 50%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Programmieren 1</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>• Verständnis für die Arbeitsweise eines Digitalrechners</td>
</tr>
<tr>
<td></td>
<td>• Beurteilung der Leistungsfähigkeit von Rechnersystemen</td>
</tr>
<tr>
<td></td>
<td>• Konzepte von Eingabe/Ausgabe Schnittstellen</td>
</tr>
<tr>
<td></td>
<td>• Hardwarenahe Programmierung in Assembler und C</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Einführung in die Elektronik</td>
</tr>
<tr>
<td></td>
<td>• Grundschaltungen der Digitaltechnik</td>
</tr>
<tr>
<td></td>
<td>• Bussysteme</td>
</tr>
<tr>
<td></td>
<td>• Aufbau eines Computersystems</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen Computerperipherie</td>
</tr>
<tr>
<td></td>
<td>• Aufbau eines Mikrocontrollers</td>
</tr>
<tr>
<td></td>
<td>• Maschinensprache</td>
</tr>
<tr>
<td></td>
<td>• Hardwarenahe Programmierung in C</td>
</tr>
<tr>
<td></td>
<td>• Interruptprogrammierung</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Rechnervorführung, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>• Patterson: Rechnerorganisation und -entwurf, Spektrum Akademischer Verlag</td>
</tr>
<tr>
<td></td>
<td>• Kernighan, Ritchie: Programmieren in C, Hanser Verlag</td>
</tr>
<tr>
<td></td>
<td>• Oberschelp, Vossen: Rechneraufbau und Rechnerarchitekturen, Oldenbourg Verlag</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
</tr>
</tbody>
</table>

- Fricke: Digitaltechnik : Lehr- und Übungsbuch für Elektrotechniker und Informatiker, Vieweg Verlag
- Schmitt: Mikrocomputertechnik mit Controllern der Atmel AVR RISC- Familie, Oldenbourg Verlag
IT-Sicherheit

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>IT-Sicherheit</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ITS</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>IT-Sicherheit</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Seedorf</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Seedorf Prof. Dr. Mosler</td>
</tr>
<tr>
<td>Zuordnung</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% /35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Grundlagen der Informatik, Programmieren 1</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | - Verständnis von Verwundbarkeiten und Risiken
| | - Kenntnis grundlegender Sicherheitsmechanismen und - modelle
| | - Fähigkeit zum Einordnen verschiedener Modelle und zur Auswahl adäquater Produkte anhand deren Modellausprägung
| | - Fähigkeit zur Anwendung von Sicherheitsprinzipien bei der Konfiguration von Sicherheitsmechanismen und bei der Implementierung von Anwendungen |
| Inhalt: | - Grundbegriffe der IT-Sicherheit
| | - Zugriffskontrollmodelle und deren Anwendungen
| | - Sensibilisierung zu Passwörtern, Social Engineering, Phishing
| | - Verwundbare und sichere Sprachkonstrukte in der Anwendungsprogrammierung
| | - Symmetrische und asymmetrische kryptographische Bausteine für Verschlüsselung und Authentifizierung
| | - Sicherheitsanalyse von Computernetzwerken
| | - Schutzmechanismen in Computernetzwerken
<p>| | - Anwendungen von Kryptographie in Computer-Netzwerken |
| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Kein |</p>
<table>
<thead>
<tr>
<th>Prüfungsleistung:</th>
<th>Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Rechnervorführung, Beamer, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Eckert: IT-Sicherheit, Oldenburg Verlag</td>
</tr>
<tr>
<td></td>
<td>Stalling, Brown: Computer Security - Principles and Practice, Addison Wesley</td>
</tr>
</tbody>
</table>
Kommunikationssysteme

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Kommunikationssysteme</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>KS</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>• Verteilte Systeme</td>
</tr>
<tr>
<td></td>
<td>• Netzwerke</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2.Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Seedorf Prof. Dr. Gero Lückemeyer</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Seedorf, Prof. Dr. Jörg Homberger, Prof. Dr. Lückemeyer</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>6 (4 + 2)</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% /35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Verteilte Systeme:</td>
</tr>
<tr>
<td></td>
<td>Präsenzstudium:</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium:</td>
</tr>
<tr>
<td></td>
<td>Verteilte Systeme:</td>
</tr>
<tr>
<td></td>
<td>68 h</td>
</tr>
<tr>
<td></td>
<td>82 h</td>
</tr>
<tr>
<td></td>
<td>Netzwerke:</td>
</tr>
<tr>
<td></td>
<td>34 h</td>
</tr>
<tr>
<td></td>
<td>26 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>7 (5 + 2)</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Keine</td>
</tr>
<tr>
<td>Studien- und</td>
<td></td>
</tr>
<tr>
<td>Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene</td>
<td>Keine</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Verteilte Systeme</td>
</tr>
<tr>
<td></td>
<td>• Grundlegende Kenntnisse über die Aufgaben, Prinzipien und Funktionsweisen verteilter Systeme</td>
</tr>
<tr>
<td></td>
<td>• Fragestellungen zur Notwendigkeit und zum Einsatz verteilter Systeme</td>
</tr>
<tr>
<td></td>
<td>• Besonderheiten bei der Erstellung verteilter Anwendungssysteme</td>
</tr>
<tr>
<td></td>
<td>Netzwerke</td>
</tr>
<tr>
<td></td>
<td>• Grundlagenkenntnisse über Telemunikationsnetzwerke</td>
</tr>
<tr>
<td></td>
<td>• Verständnis netzwerktechnischer Grundlagen, insbesondere der Konzepte wie grundlegende Protokollmechanismen</td>
</tr>
<tr>
<td></td>
<td>• Architekturen und Konstruktionsprinzipien der Netzwerktechnik</td>
</tr>
<tr>
<td></td>
<td>• Grundkenntnisse heutiger Internet-basierter Netzwerkarchitekturen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Verteilte Systeme</td>
</tr>
<tr>
<td></td>
<td>• Eigenschaften verteilter Systeme</td>
</tr>
<tr>
<td>Systemmodelle</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Interprozesskommunikation</td>
<td></td>
</tr>
<tr>
<td>Verteilte Objekte und Remote Aufrufe</td>
<td></td>
</tr>
<tr>
<td>Sicherheit</td>
<td></td>
</tr>
<tr>
<td>Zeit- und Zustandsmanagement in verteilten Systemen</td>
<td></td>
</tr>
<tr>
<td>Verteilte Transaktionen</td>
<td></td>
</tr>
<tr>
<td>Verteilte Datei- und Namensdienste</td>
<td></td>
</tr>
<tr>
<td>Web Services</td>
<td></td>
</tr>
<tr>
<td>Serviceorientierte Architekturen</td>
<td></td>
</tr>
<tr>
<td>Verteilte parallele Anwendungen</td>
<td></td>
</tr>
</tbody>
</table>

Netzwerke

- Grundlagen, Begriffsdefinitionen, ISO/OSI-Basisreferenzmodell
- Bitübertragungsschicht
- Sicherungsschicht
- Vermittlungsschicht
- Transportschicht
- Basisprotokolle der Anwendungsschicht

<table>
<thead>
<tr>
<th>Prüfungsvorleistung:</th>
<th>Studienarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Rechnervorführung, Beamer, Moodle</td>
</tr>
</tbody>
</table>

Literatur:

- Verteilte Systeme
 - Coulouris: Distributed Systems, Addison-Wesley

Netzwerke

- Kurose, Ross: Computer Networking, Addison Wesley
- Stallings: Data and Computer Communications, Prentice Hall
- Tanenbaum: Computer Networks, Prentice Hall

Software: Keine
Betreutes Praktisches Studienprojekt

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Betreutes Praktisches Studienprojekt</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BPS</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Betreutes Praktisches Studienprojekt</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Koch</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Kollegen der Fachgruppe Informatik</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h (Projektbesprechung)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>26</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Bestandene Bachelor-Vorprüfung, Prüfungen und Leistungsnachweise aus dem Hauptstudium im Umfang von mindestens 40 Kreditpunkten</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Erwerb praktischer Fähigkeiten zur Ergänzung der Lehrinhalte
• Erkennen von Problemstellungen aus der Praxis und Fähigkeit zur Entwicklung von Lösungsstrategien
• Kennenlernen der innerbetrieblichen Organisation
• Kennenlernen von interdisziplinärem Teamwork und der dabei erforderlichen Führungsmechanismen |
| Inhalt: | Die Praxisstelle muss im Bereich der Informatik tätig sein. Die jeweiligen Inhalte ergeben sich aus den aktuellen Aufgaben der Praxisstelle. |
| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Bericht, Kolloquium mit Präsentation |
| Prüfungsleistung: | Keine |
| Medienformen: | Beamer, Tafel, Moodle |
| Literatur: | Von der Praxisstelle projektbezogen empfohlen |
| Software: | Projektbezogen |
Präsentationstraining

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Präsentationstraining</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PTR</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Präsentationstraining</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Lehrbeauftragte des Didaktikzentrums</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Beherrschen von Techniken mündlicher Präsentation
| | • Fähigkeit, mit Mindmaps und anderen Visualisierungstechniken umgehen zu können |
| Inhalt: | • Kreativitätstraining
| | • Konzentrationstraining
| | • Vortragstraining: Visualisierungstechniken, verbale Kommunikation, Körpersprache, Feedbacks der Gruppenmitglieder zu den Präsentationen |
| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Projektarbeit |
| Prüfungsleistung: | Keine |
| Medienformen: | Beamer, Overhead-Projektor, Video-Aufzeichnungen, Moodle |
| Literatur: | • Kolb, Miltner: Gedächtnis-Training für den Job, Gröfe und Unzer
| | • Mehrmann: Präsentation und Moderation, Econ TB-Verlag
| | • Schlicksupp: Ideenfindung, Vogel-Verlag |
| Software: | MS Powerpoint |
Mensch-Maschine-Kommunikation

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Mensch-Maschine-Kommunikation</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MMK</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Mensch-Maschine-Kommunikation</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Rausch</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Deininger, Prof. Dr. Rausch, Prof. Dr. Lückemeyer, Prof. Dr. Padó</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.50% / 50%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h Eigenstudium: 26 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:
- Verstehen von menschlichem Verhalten, Handeln, Denken und Fühlen im Zusammenhang mit der Nutzung von Medien, insbesondere dem Computer
- Kenntnis der Rolle und Berufsfeld der Software-Ergonomie
- Kenntnis der wichtigsten Anforderungen und Prinzipien der Arbeitsgestaltung
- Kenntnis eines benutzerzentrierten Entwicklungsprozesses sowie Methoden und Verfahren
- Verständnis von ergonomischen Aspekte bei in der Software-Entwicklung
- Verständnis und Anwendung von Prinzipien guter Benutzbarkeit

Inhalt:
- Theoretische Grundlagen
 - Kommunikationsmodelle zwischen Mensch und Computer
 - Informations- und Verhaltenstheorie
 - Interaktionsformen
 - Software Ergonomie
- Praktische Anwendung
 - Prozessmodell zur Erstellung von Schnittstellen
 - Analyse der Anforderungen
 - Entwurf und Richtlinien
<table>
<thead>
<tr>
<th>Codierung und Paradigmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test und Evaluation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsvorleistung:</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Overhead-Projektor, Rechnervorführung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newman, Lamming: Interactive System Design, Addison-Wesley</td>
</tr>
<tr>
<td>Preece: Human Computer Interaction, Addison-Wesley</td>
</tr>
<tr>
<td>Sun: JDK 5.0 Documentation, http://java.sun.com/j2se/1.5.0/docs/index.html</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software:</th>
</tr>
</thead>
</table>
Informatik-Projekt 2

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Informatik-Projekt 2</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IP2</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Informatik-Projekt 2</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Wanner</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Coors, Prof. Dr. Knauth, Prof. Dr. Wanner</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>7</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Bestandene Bachelor-Vorprüfung, mindestens 40 Kreditpunkte aus dem Hauptstudium und insbesondere die Module Software-Technik sowie Datenstrukturen und Algorithmen erfolgreich absolviert wurden</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>
• Realisierung eines Projektes in einer größeren Projektgruppe (ca. 10 Personen) mit Rollenverteilung. |
| Inhalt: | Durchführen eines Softwareprojekts von Analyse über Design bis zur Implementierung:
• Einrichtung und Durchführung eines Projektes
• Erstellung eines Pflichtenhefts auf Basis der Vorgaben eines fiktiven „Kunden“, Durchführung einer Aufwandsschätzung auf Basis dieses Pflichtenhefts
• Aufstellen eines Projektplanes und Verfahren zur Projektverfolgung und des Risikomanagements
• Implementierung im Team (Version-Management, Build-Verfahren, Abstimmungsprozesse, Schnittstellen)
• Präsentation von Ergebnissen und Zwischenergebnissen
• Einsatz aktueller Technologien zur Implementierung der Anwendung
• Präsentation von Zwischenergebnissen und Abschlusspräsentation. |
<p>| Prüfungsvorleistung: | Keine |</p>
<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
<th>Kein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung:</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Skript, Beamer, Overhead-Projektor, Rechnervorführung, Moodle</td>
</tr>
</tbody>
</table>
| Literatur: | - Brooks: Vom Mythos des Mann-Monats, Mitp-Verlag
| | - DeMarco, Lister: Bärentango, Hanser Fachbuch
| | - DeMarco: Der Termin, Hanser Wirtschaft
| | - Hedeman, Seegers: Learn Prince2, Van Haren Publishing |
| Software: | Keine |
Seminar

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SEM</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten der Fachgruppe Informatik</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Vorlesungen des Grundstudiums, vertiefende Vorlesungen zum Seminarthema</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>- Vertiefung von Schlüsselqualifikationen im Bereich selbständiges, wissenschaftliches Recherchieren, Strukturieren, Präsentieren und Moderieren</td>
</tr>
<tr>
<td></td>
<td>- Aktive Erarbeitung und Reflexion von Erkenntnis und Wissen statt rezeptiver Aufnahme (wie in Vorlesungen)</td>
</tr>
<tr>
<td></td>
<td>- Exemplarische Vertiefung von im Studium behandelten Inhalten, Untersuchungen aktueller Themen der Informatik und ihrer Wechselwirkung mit ihren Einsatzumfeldern</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Recherche und Aufarbeitung von Quellen</td>
</tr>
<tr>
<td></td>
<td>- Strukturierung und Präsentation der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Diskussion und kritische Reflexion</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Overhead-Projektor, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Software:</td>
<td>Projektabhängig</td>
</tr>
</tbody>
</table>
Betriebspsychologie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Betriebspsychologie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PSY</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Betriebspsychologie</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Gunda Rosenauer</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit Gruppenarbeit (ca.75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h Eigenstudium: 56 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Die Studierenden gewinnen</td>
</tr>
<tr>
<td></td>
<td>• Kenntnisse der psychologischen Grundbegriffe und Anwendungsfelder der Psychologie</td>
</tr>
<tr>
<td></td>
<td>• Kenntnisse der Modelle und Methoden der Schlüsselkompetenzen Kommunikation, Teamarbeit, Konfliktmanagement und Führung</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit, Techniken des Selbst- und Zeitmanagements anwenden</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Einführung in die Psychologie im Überblick und soziale Prozesse</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Kommunikation</td>
</tr>
<tr>
<td></td>
<td>• Selbstorganisation im Projekt</td>
</tr>
<tr>
<td></td>
<td>• Führung und Motivation</td>
</tr>
<tr>
<td></td>
<td>• Teamarbeit und Konfliktmanagement</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Overhead-Projektor, Tafel, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>• Glasl: Konfliktmanagement, Freies Geistesleben</td>
</tr>
<tr>
<td></td>
<td>• Kriz & Nöbauer: Teamkompetenz. Vandenhoeck & Ruprecht</td>
</tr>
<tr>
<td></td>
<td>• Lohaus: Skriptum zur Vorlesung</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Weinert: Organisations- und Personalpsychologie. Beltz</td>
<td></td>
</tr>
<tr>
<td>Wellhöfer: Schlüsselqualifikation Sozialkompetenz. Lucius & Lucius</td>
<td></td>
</tr>
<tr>
<td>Zimbardo, Gerrig: Psychologie. Pearson Studium</td>
<td></td>
</tr>
<tr>
<td>Recht</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor-Studiengang Informatik</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Recht</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>REC</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Recht</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Bücking, Frau Seybold-Schryro</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.50% / 50%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| **Lernziele/Kompetenzen:** | Die Studierenden gewinnen
- Grundlegende Kenntnisse des hierarchischen Aufbaus der Rechtsordnung unter Einschluss des Internationalen und des EU-Rechts sowie der Gerichtsorganisation
- Grundlegende Kenntnisse des allgemeinen Zivilrechts und straf- und zivilprozessualer Abläufe
- Kenntnisse über die Besonderheiten elektronischer Verträge sowie Haftungsfragen im Bereich Internet / eCommerce |
| **Inhalt:** |
- Aufbau unserer Rechtsordnung
- Gliederung der einzelnen Rechtsgebiete
- Gerichtsorganisation und Verfahrensabläufe
- Bürgerliches Recht/BGB
- AGB-Recht und Verbraucherschutz
- Internet/Newe Medien
- EDV-Verträge
- Internet-Vertragsrecht
- Gewerblicher Rechtsschutz und Urheberrecht
- Datenschutzrecht |
<p>| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Kein |
| Prüfungsleistung: | Klausur (60 Minuten) |</p>
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Beamer, Tafel, Overhead-Projektor, Moodle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Baumann: Einführung in die Rechtswissenschaft, Beck Juristischer Verlag</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Interdisziplinäres Projekt

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Interdisziplinäres Projekt</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>INP</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Interdisziplinäres Projekt</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten der Fachgruppe Informatik</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung und Projektarbeit</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 34 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Bestandenes Betreutes Praktisches Studienprojekt</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Software-Technik</td>
</tr>
</tbody>
</table>

Lernziele/Kompetenzen:

Selbständige Bearbeitung eines Anwendungsprojektes unter Nutzung der im Studium erlernten Informatik-Methoden und Techniken, beispielsweise in einem der folgenden Gebiete:
- Geoinformatik
- Wirtschaftsinformatik
- CAD/CAE
- Webdesign
- eTechnologies
- Elektronischer Handel

Erwerb von Kenntnisse in einem Anwendungsbereich,
- Erwerb von praktischen Erfahrungen bei der Umsetzung von Anforderungen in einem ausgewählten Anwendungsgebiet
- Selbständige Einarbeitung in ein Anwendungsgebiet der Informatik
- Einsatz der im Studium erworbenen Kenntnisse, insb. die Methoden und Techniken der Informatik in diesem Gebiet
- Fähigkeit zum projektbezogenen Arbeiten

Inhalt:

- Einarbeitung in das Anwendungsgebiet und in das Projekt
- Anforderungsanalyse und Konzeption
- Meilenstein: Präsentation
- Realisierung
- Abschlusspräsentation
<table>
<thead>
<tr>
<th>Prüfungsvorleistung:</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis:</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Overhead-Projektor, Tafel, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig vom jeweiligen Fachgebiet</td>
</tr>
<tr>
<td>Software:</td>
<td>Abhängig vom jeweiligen Fachgebiet</td>
</tr>
</tbody>
</table>
Bachelor-Thesis

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Bachelor-Thesis</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BT</td>
</tr>
</tbody>
</table>
| Lehrveranstaltung: | • Bachelor-Arbeit
 • Bachelor-Seminar |
| Studiensemester: | 7 |
| Modulverantwortliche(r): | Studiendekan |
| Dozent(in): | Alle Dozenten der Fachgruppe Informatik |
| Zuordnung zum Curriculum: | Pflichtmodul im Hauptstudium |
| SWS | 2 (0 + 2) |
| Lehrform | Selbständige Projektarbeit |
| Arbeitsaufwand |
| Präsenzstudium: | Eigenstudium: | |
| Bachelor-Arbeit | 0 h | 360 h |
| Bachelor-Seminar | 34 h | 56 h |
| Kreditpunkte: | 15 (12 + 3) |
| Voraussetzungen nach Studien- und Prüfungsordnung | Bestandes Interdisziplinäres Projekt |
| Empfohlene Voraussetzungen | Keine |
| Lernziele/Kompetenzen: | • Fähigkeit zum eigenständigen wissenschaftlichen Arbeiten
 • Fähigkeit zur selbständigen Bearbeitung eines Projektes |
| Inhalt: |
 • Bachelor-Arbeit
 Selbständige Bearbeitung eines Projektes aus dem Bereich Informatik, möglichst in Kooperation mit einer Firma.
 • Bachelor-Seminar
 Fähigkeit zu Präsentation erarbeiteter Ergebnisse |
| Prüfungsvorleistung | Keine |
| Leistungsnachweis: | Kein |
| Prüfungsleistung: | Bachelor-Arbeit in 3 facher Ausfertigung mit Kurzfassung und Präsentation |
| Medienformen: | Beamer, Overhead-Projektor, Moodle |
| Literatur: | Eigene Recherche, projektspezifische Literatur (empfohlen von den Betreuern) |
| Software: | Projektabhängig |
Modul im Wahlpflicht Informatik 1 - 5

Bereich Kerninformatik

Compilerbau

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Compilerbau</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>COB</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Compilerbau</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Deininger</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Deininger, Prof. Dr. Heusch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% /35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Programmieren 1 und 2</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Grundlegendes Verständnis für den Aufbau eines Compilers
• Beherrschung regulärer Ausdrücke und kontextfreier Grammatiken
• Benutzung von javacc und Einsatz für Compilergenerierung und verwandte Aufgaben. |
| Inhalt: | • Theoretische Grundlagen des Compilerbaus
• Lexikalische Analyse / Reguläre Ausdrücke
• Syntaktische Analyse / Kontextfreie Grammatiken
• Semantische Analyse / Attributierte Syntaxbäume
• Codegenerierung / Codeoptimierung
• Praktische Anwendung von Compilergeneratoren am Beispiel von javacc
• Schrittweise Realisierung von Compiler-Bestandteilen
• Erlernen und Nutzung des Werkzeugs javacc |
<p>| Prüfungsvorleistung: | Studienarbeit |
| Leistungsnachweis: | Kein |
| Prüfungsleistung: | Klausur (90 Minuten) |</p>
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Tafel, Beamer, Moodle</th>
</tr>
</thead>
</table>
 • Aho, Sethi, Ullman: Compilerbau, Teil 1 und Teil 2, Oldenbourg-Verlag
 • Appel, Palsberg: Modern Compiler Implementation in Java, Cambridge University Press
 • Güting, Erwig: Übersetzerbau. Springer-Verlag
 • Wirth: Grundlagen und Techniken des Compilerbaus, Oldenbourg-Verlag |
| Software: | • Javacc, http://javacc.java.net/ |
Formale Sprachen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Formale Sprachen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>FOS</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Formale Sprachen</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Heusch</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Heusch, Prof. Dr. Padó</td>
</tr>
<tr>
<td>Zuordnung:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>• Kenntnisse über weitere Komplexitätsklassen</td>
</tr>
<tr>
<td></td>
<td>• Kenntnisse zum Berechenbarkeitsbegriff</td>
</tr>
<tr>
<td></td>
<td>• Beziehung zwischen Phänomenen natürlicher Sprache und formalen Sprachklassen</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur Bewertung der Komplexität von Problemen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Zeit- und Platzhierarchien</td>
</tr>
<tr>
<td></td>
<td>• Eigenschaften von Grammatikformalismen für natürliche Sprache</td>
</tr>
<tr>
<td></td>
<td>• Die Church'sche These und der λ-Kalkül für Programmiersprachen und natürliche Sprache</td>
</tr>
<tr>
<td></td>
<td>• Primitiv rekursive, µ-rekursive Funktionen und der Gödelsche Unvollständigkeitssatz</td>
</tr>
<tr>
<td></td>
<td>• Fraktale Strukturen und Lindenmayer-Systeme</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Moodle, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>• Salomaa, Burkart: Formale Sprachen, Springer-Verlag</td>
</tr>
<tr>
<td></td>
<td>• Börger: Komplexität, Berechenbarkeit, Logik, Vieweg Verlag</td>
</tr>
<tr>
<td></td>
<td>• Lewis, Papadimitriou: Elements of the Theory of Computations, Prentice Hall</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Automatische Sprachverarbeitung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Automatische Sprachverarbeitung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ASV</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Automatische Sprachverarbeitung</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Padó</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Padó</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Theoretische Informatik</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Grundkenntnisse über die verschiedenen Aufgabenstellungen der automatischen Sprachverarbeitung erlangen
• Verständnis für Probleme und Lösungsstrategien der Sprachverarbeitung
• Praktische Erfahrung im Umgang mit Standard-Tools für die Sprachverarbeitung |
| Inhalt: | • Linguistische Beschreibung von Sprache
• Vorverarbeitung von Textdaten
• Verarbeitungsmethoden auf der Ebene von Wörtern und Wortgruppen
• Anwendungen: Informationsextraktion, maschinelle Übersetzung, Verarbeitung gesprochener Sprache, Dialogsysteme |
| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Kein |
| Prüfungsleistung: | Projektarbeit |
| Medienformen: | Beamer, Overhead-Projektor, Tafel, Moodle |
| Literatur: | • Carstensen: Computerlinguistik und Sprachtechnologie - Eine Einführung, Spektrum Verlag
• Manning, Schütze: Foundations of Statistical Natural Language Processing, MIT Press
• Jurafsky, Martin: Speech and Language Processing, |
<table>
<thead>
<tr>
<th></th>
<th>Pearson Prentice Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Ubiquitous Computing

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Ubiquitous Computing</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>UBC</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Ubiquitous Computing</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Knauth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Knauth, Prof. Dr. Kramer, Prof. Dr. Keller</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS:</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.50% / 50%)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 68 h Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Technische Informatik, Programmieren 3</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Kenntnisse und praktische Erfahrung über</td>
</tr>
<tr>
<td></td>
<td>• Arbeitsweise und C-Programmierung Mikrocontroller</td>
</tr>
<tr>
<td></td>
<td>• Sensornetzwerke, RFID Technologien, NFC</td>
</tr>
<tr>
<td></td>
<td>• Anwendungserstellung für Mobilgeräte</td>
</tr>
<tr>
<td></td>
<td>• Mobile und verteilte Anwendungen und Dienste</td>
</tr>
<tr>
<td></td>
<td>• Architekturen und Protokolle für mobile Informationssysteme</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Praktische Softwareentwicklung für Mikrocontroller</td>
</tr>
<tr>
<td></td>
<td>• Architektur mobiler Informationssysteme</td>
</tr>
<tr>
<td></td>
<td>• Betriebssysteme für mobile Endgeräte</td>
</tr>
<tr>
<td></td>
<td>• Software-Entwicklung für mobile Endgeräte</td>
</tr>
<tr>
<td></td>
<td>• Aktuelle Anwendungsbeispiele</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Overhead-Projektor, Moodle</td>
</tr>
<tr>
<td>Literature:</td>
<td>• Wüst: Mikroprozessorotechnik, Vieweg Verlag</td>
</tr>
<tr>
<td></td>
<td>• Schmitt: Mikrocomputertechnik mit Controlern der Atmel AVR-RISC-Familie: Programmierung in Assembler und C: Schaltungen und Anwendungen, Oldenbourg Verlag</td>
</tr>
<tr>
<td></td>
<td>• Barnett, O’Cull , Cox: Embedded C Programming and the Atmel AVR, Clifton Park</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>• Hansmann: Pervasive Computing, Springer-Verlag</td>
</tr>
<tr>
<td></td>
<td>• Becker, Pant: Android Grundlagen und Programmierung,</td>
</tr>
<tr>
<td></td>
<td>dpunkt.verlag</td>
</tr>
<tr>
<td></td>
<td>• Holger, Willig: Protocols and Architectures for Wireless</td>
</tr>
<tr>
<td></td>
<td>Sensor Networks, John Wiley & Sons</td>
</tr>
<tr>
<td></td>
<td>• Bartmann, Die elektronische Welt mit Arduino entdecken,</td>
</tr>
<tr>
<td></td>
<td>O'Reilly</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Bildverarbeitung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Bildverarbeitung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BVA</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Bildverarbeitung</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Müßigmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Müßigmann</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Fähigkeiten zur/zum</td>
</tr>
<tr>
<td></td>
<td>Auswahl und ggf. Anpassung geeigneter Verfahren für praktische Aufgabenstellungen aus dem Bereich der Bildverarbeitung</td>
</tr>
<tr>
<td></td>
<td>Entwurf von Algorithmen für die Bildverarbeitung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen der Signalverarbeitung (Signale, Signalabtastung, Systeme, Faltung)</td>
</tr>
<tr>
<td></td>
<td>Digitalisierung</td>
</tr>
<tr>
<td></td>
<td>Endliche diskrete Fouriertransformation</td>
</tr>
<tr>
<td></td>
<td>Filterung (Hochpassfilter, Tiefpassfilter)</td>
</tr>
<tr>
<td></td>
<td>Bildaufnahme (Kamera, Optik, Beleuchtung)</td>
</tr>
<tr>
<td></td>
<td>Binärbildverarbeitung (Nachbarschaftsbegriff, morphologische Operationen, Formmerkmale, Konturbestimmung)</td>
</tr>
<tr>
<td></td>
<td>Bildvorverarbeitung (Kontrastanhebung, Histogramm, Kantendetektion, Korrelation)</td>
</tr>
<tr>
<td></td>
<td>Objekt- und Lageerkennung</td>
</tr>
<tr>
<td></td>
<td>Hough-Transformation</td>
</tr>
<tr>
<td>Prüfungsvorleistung</td>
<td>Keine</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Mündliche Prüfung (20 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Skript, Overhead-Projektor, Beamer, Rechnervorführung, Moodle</td>
</tr>
</tbody>
</table>
| Literatur: | • Karrenberg: Signale - Prozesse - Systeme, Springer-Verlag
| | • Tönnies: Grundlagen der Bildverarbeitung, Pearson Studium
| | • Burger, Burge: Digitale Bildverarbeitung, Springer-Verlag
| Software: | • Java SDK (Programmiersprache)
| | • JAI (Grafikbibliothek) |
Algorithmische Geometrie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Algorithmische Geometrie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ALG</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Algorithmische Geometrie</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Wolpert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Wolpert</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Algorithmen und Datenstrukturen</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Kenntnisse geometrischer Algorithmen und Datenstrukturen
| | • Fähigkeit, geometrische Algorithmen hinsichtlich Laufzeit und Speicherplatzverbrauch zu analysieren
| | • Fähigkeit zur Anwendung geometrischer Algorithmen, z.B. in den Bereichen Computergrafik, CAD/CAM und geographische Informationssysteme |
| Inhalt: | • Konvexe Hülle
| | • Schnitt von Liniensegmenten: Sweep-Verfahren, doppelt verkettete Kantenliste
| | • Triangulierung von Polygonen
| | • Orthogonale Bereichssuche: kd-Bäume, Bereichsbäume
| | • Punktolokalisierung: Trapezierung, randomisierte inkrementelle Konstruktion
| | • Voronoi-Diagramm
| | • Delaunay-Triangulierung
| | • Punkt-Linie-Dualität, Supersampling
| | • Arrangements, Zonensatz |
| Prüfungsvorleistung: | Keine |
| Leistungsnachweis: | Kein |
| Prüfungsleistung: | Projektarbeit |
| Medienformen: | Beamer, Tafel, Rechnervorführung, Moodle |
| Literatur: | • de Berg, Cheong, van Krefeld, Overmars: Computational Geometry, Springer-Verlag
| | • Klein: Algorithmische Geometrie, Addison-Wesley
| | • Boissonnat, Yvinec: Algorithmic Geometry, Cambridge University Press |
| Software: | Keine |
High Performance Computing

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>High Performance Computing</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>HPC</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>High Performance Computing</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Keller</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Keller</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS:</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.50% / 50%)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Programmieren 1, Technische Informatik</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>- Verständnis von Paralleler Programmierung</td>
</tr>
<tr>
<td></td>
<td>- Programmierung von MPI, OpenMP und GPGPU</td>
</tr>
<tr>
<td></td>
<td>- Verständnis numerischer Algorithmen und Performance</td>
</tr>
<tr>
<td></td>
<td>- Benutzung von Tools für parallele Programmierung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Einführung in die parallele Programmierung</td>
</tr>
<tr>
<td></td>
<td>- Paralleles Programmierparadigma MPI</td>
</tr>
<tr>
<td></td>
<td>- Parallele Programmierung mittels OpenMP</td>
</tr>
<tr>
<td></td>
<td>- Parallele Programmierung mittels OpenCL/CUDA</td>
</tr>
<tr>
<td></td>
<td>- Effizienz von parallelen Algorithmen</td>
</tr>
<tr>
<td></td>
<td>- Performance Analyse Tools</td>
</tr>
<tr>
<td></td>
<td>- Verwendung von parallelen Debuggern</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Overhead-Projektor, Beamer, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>- MPI-Standard v. 2.2.2011</td>
</tr>
<tr>
<td></td>
<td>- Butenhof: Programming with POSIX Threads, Addison-Wesley</td>
</tr>
<tr>
<td></td>
<td>- Chapman, Jost R. V. D. Pas: Using OpenMP: Portable Shared Memory Parallel Programming, MIT Press</td>
</tr>
</tbody>
</table>

| Software: | Keine |
Enterprise Architecture Management

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name des Teilmoduls:</td>
<td>Enterprise Architecture Management</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EAM</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Enterprise Architecture Management</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Wanner</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Wanner, Prof. Dr. Lückemeyer</td>
</tr>
<tr>
<td>Zuordnung:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.50% / 50%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen</td>
<td>Die Studierenden sollen</td>
</tr>
<tr>
<td></td>
<td>ein Verständnis für den Mehrwert und den konkreten Nutzen integrierter Unternehmensarchitekturen sowie für die Aufgabenstellung eines Unternehmensarchitekten aufbauen</td>
</tr>
<tr>
<td></td>
<td>Methoden und Techniken zur Strukturierung von technischen und fachlichen Zusammenhängen in einem Unternehmen kennen lernen</td>
</tr>
<tr>
<td></td>
<td>Ansätze und Werkzeuge zur Gestaltung und Modellierung von unternehmensrelevanten Zusammenhängen (von der Unternehmens- und IT-Strategie über Organisationsstrukturen und Geschäftsprozesse bis zur Abbildung in Anwendungslandschaften und die technische Umsetzung auf der Infrastrukturbene) einsetzen lernen</td>
</tr>
<tr>
<td></td>
<td>Möglichkeiten kennenlernen für die organisatorische und prozessuale Einbettung des Unternehmensarchitekturmanagements in einem Unternehmen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Geschäftsprozessmanagement, Unternehmensarchitekturmanagement, Anforderungsmanagement und Projektportfoliomanagement im Zusammenspiel (Terminologie, Modellierungssprachen, Anwendungsgebiete, Aufgaben und Abgrenzung, etc.)</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Overhead-Projektor, Beamer, Rechnervorführung, Moodle</td>
</tr>
</tbody>
</table>

Literatur:
- Erl: *Principles of Service Design*, Prentice Hall

Software:
- Keine
Simulation

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Simulation</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SIM</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Simulation</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Lückemeyer</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Lückemeyer</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Keine</td>
</tr>
<tr>
<td>Studien- und Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Grundlegende Kenntnisse über Simulationsparadigmen und Simulationsmethoden</td>
</tr>
<tr>
<td></td>
<td>Vorgehen bei Auswahl und Erstellung einer Simulation</td>
</tr>
<tr>
<td></td>
<td>Verwendung von Standardsimulationswerkzeugen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Systeme und Modelle</td>
</tr>
<tr>
<td></td>
<td>Systemstruktur</td>
</tr>
<tr>
<td></td>
<td>Systemzustand</td>
</tr>
<tr>
<td></td>
<td>Systemverhalten</td>
</tr>
<tr>
<td></td>
<td>Simulationsparadigmen (u.a. diskrete Ereignissimulation)</td>
</tr>
<tr>
<td></td>
<td>Simulationsmethoden (u.a. Fuzzy-Regelung, Multiagentensysteme)</td>
</tr>
<tr>
<td></td>
<td>Vorgehen bei Erstellung einer Simulation</td>
</tr>
<tr>
<td></td>
<td>Simulationswerkzeuge</td>
</tr>
<tr>
<td></td>
<td>Systementwurf</td>
</tr>
<tr>
<td></td>
<td>Systemanalyse</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Beamer, Rechnervorführung, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Bossel: Systeme, Dynamik, Simulation: Modellbildung, Analyse und Simulation komplexer Systeme, Books on Demand</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
</tbody>
</table>

- Nollau: Modellierung und Simulation technischer Systeme: Eine praxisnahe Einführung, Springer-Verlag
IT-Sicherheit 2

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Reaktive Sicherheit</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SEC</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Reaktive Sicherheit</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Seedorf</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Seedorf</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% /35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>IT-Sicherheit, Kommunikationssysteme, Internet-Programmierung, Betriebssysteme, Datenbanksysteme</td>
</tr>
</tbody>
</table>
| Lernziele/Kompetenzen: | • Verständnis von Verwundbarkeiten und Risiken in Netzwerken und Web-Applikationen
• Fähigkeit zum Einordnen und zur Auswahl von Prozessstandards für die Verwundbarkeitsanalyse
• Kenntnis der Funktionsweise von Malware und Fähigkeit zur Einordnung und Auswahl verschiedener Bekämpfungsansätze
• Grundlegende Fähigkeiten zur maschinennahen Analyse von Malware
• Verständnis und Fähigkeit zur Einordnung und Auswahl wesentlicher Ansätze und konkreter Systeme zur Angriffserkennung
• Kenntnis von Lösungen für das Spannungsfeld zwischen Sicherheits-Überwachung und Datenschutz |
| Inhalt: | • Sicherheitsanalyse von Netzwerken anhand von Prozessstandards
• Sichere Web-Applikationen:
 Neuralgische Punkte auf Client- und Server-Seite
 Auffinden von Verwundbarkeiten
 Sichere Programmkonstrukte und Primitiven
• Malware-Erkennung und -Bekämpfung:
 Grundbegriffe, Funktionsweise von Viren, Würmern und Rootkits
• Malware-Analyse, Honeypots, Gegenmaßnahmen zur |
<table>
<thead>
<tr>
<th>Erkennung und Abwehr</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Angriffs- und Betrugs-Erkennung: Grundlegende Ansätze</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen, Algorithmen und Systeme für: Missbrauchs-erkennung und Anomalieerkennung datenschutzkonforme Überwachung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsvorleistung:</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Rechnervorführung, Moodle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aycock: Computer Viruses and Malware, Springer-Verlag</td>
<td></td>
</tr>
<tr>
<td>• Szor: The Art of Computer Virus Research and Defense, Addison Wesley</td>
<td></td>
</tr>
<tr>
<td>• Provos, Holz: Virtual Honeypots: From Botnet Tracking to Intrusion Detection, Addison Wesley</td>
<td></td>
</tr>
<tr>
<td>• Hoglund, Butler: Rootkits: Subverting the Windows Kernel, Addison Wesley</td>
<td></td>
</tr>
<tr>
<td>• Swimmer: Malware Intrusion Detection, Books on Demand</td>
<td></td>
</tr>
<tr>
<td>• Meier: Intrusion Detection effektiv! Modellierung und Analyse von Angriffsmustern, Springer-Verlag</td>
<td></td>
</tr>
<tr>
<td>• Flegel: Privacy-Respecting Intrusion Detection. Springer-Verlag</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Backtrack Linux Penetration Testing Distribution, http://www.backtrack-linux.org/</td>
<td></td>
</tr>
</tbody>
</table>
Soft Computing

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Soft Computing</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SOC</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Soft Computing</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Homberger</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.65% / 35%)</td>
</tr>
</tbody>
</table>
| **Arbeitsaufwand** | Präsenzstudium: 68 h
Eigenstudium: 82 h |
| **Kreditpunkte:** | 5 |
| **Voraussetzungen nach Studien- und Prüfungsordnung** | Keine |
| **Empfohlene Voraussetzungen** | Programmieren 1 + 2 |
| **Lernziele/Kompetenzen:** | Die Studierenden sind in der Lage,
- Denkweise und grundlegende Methoden des Soft Computing (SC) anzuwenden sowie
- Realweltprobleme mit Hilfe von SC-Methoden zu lösen. |
| **Inhalt:** |
- Grundbegriffe (u.a. Intelligenz, Adaptation, Lernen, Optimieren)
- Evolutionäre Algorithmen
- Künstliche neuronale Netze
- Fuzzy-Logik
- Anwendungen aus Produktion und Logistik |
| **Prüfungsvorleistung:** | Studienarbeit |
| **Leistungsnachweis:** | Kein |
| **Prüfungsleistung:** | Klausur (90 Minuten) |
| **Medienformen:** | Tafel, Overhead-Projektor, Beamer, Rechnervorführung, Moodle |
| **Literatur:** |
- Kramer: Computational Intelligence. Springer-Verlag
- Lippe: Soft Computing, Springer-Verlag
- Schöneburg, Hansen, Gawelczyk : Neuronale Netze, Markt & Technik-Verlag
- Zell: Simulation neuronaler Netze, Addison-Wesley-Verlag |
| **Software:** | Keine |
Sondermodul Kerninformatik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Sondermodul Kerninformatik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SMD-K</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Sondermodul Kerninformatik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>vor. Vorlesung mit integrierten Übungen (ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Abhängig vom Thema.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Wird vom Prüfungsausschuss vorab definiert (s.a. SPO)</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Wird vom Prüfungsausschuss vorab definiert (s.a. SPO)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Overhead-Projektor, Moodle, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Software:</td>
<td>Projektabhängig</td>
</tr>
</tbody>
</table>
Bereich Angewandte Informatik

Unternehmenssoftware

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Unternehmenssoftware</td>
</tr>
<tr>
<td>Kürzel</td>
<td>USW</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Unternehmenssoftware</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. Rausch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Kramer, Prof. Dr. Lückemeyer, Prof. Dr. Mosler</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Die Studierenden sollen</td>
</tr>
<tr>
<td></td>
<td>• ERP-Systeme im Überblick verstehen und einsetzen können</td>
</tr>
<tr>
<td></td>
<td>• Ausgewählte Unternehmens-Systeme und Teilfunktionen umfassender Systeme in Beispielanwendungen einsetzen können</td>
</tr>
<tr>
<td></td>
<td>• Unternehmenssoftware für ausgewählte Aufgaben und Funktionen anpassen und erweitern können</td>
</tr>
<tr>
<td></td>
<td>• Softwareprodukte für die unternehmensübergreifende Kooperation im Überblick verstehen</td>
</tr>
<tr>
<td></td>
<td>• Einbettung von Unternehmenssoftware in eine IT-Landschaft verstehen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Strategien und Techniken für Auswahl, Einführung, Anpassung und Erweiterung von Unternehmenssoftware</td>
</tr>
<tr>
<td></td>
<td>• Entwicklungsumgebungen für ausgewählte Systeme kennenlernen und in kleinen Szenarien praktisch einsetzen</td>
</tr>
<tr>
<td></td>
<td>• Einsatz von Unternehmenssoftware</td>
</tr>
<tr>
<td></td>
<td>• Logistik, Produktion, Finanzwesen, Personalwesen</td>
</tr>
<tr>
<td></td>
<td>• Customizing</td>
</tr>
<tr>
<td></td>
<td>• Ergänzungsprogrammierung</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Aufruf von APIs aus anderen Programmierumgebungen</td>
<td>(z.B. Aufruf von SAP BAPIs aus Java Programmen)</td>
</tr>
<tr>
<td>Softwarelogistik</td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Rechnervorführung, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>• Hansen, Neumann: Wirtschaftsinformatik. Bd.1: Grundlagen und Anwendungen, UTB Verlag</td>
</tr>
<tr>
<td></td>
<td>• Bertschek et al.: Unternehmenssoftware und Eingebettete Systeme, FAZIT-Schriftenreihe, MFG Baden-Württemberg</td>
</tr>
<tr>
<td></td>
<td>• Kurbel: Produktionsplanung und -steuerung im ERP und SCM, Oldenbourg Verlag</td>
</tr>
<tr>
<td></td>
<td>• Gronau: Enterprise Resource Planning und Supply Chain Management, Oldenbourg Verlag</td>
</tr>
<tr>
<td></td>
<td>• Hesseler, Görtz: Basiswissen ERP-Systeme, W3L</td>
</tr>
<tr>
<td></td>
<td>• Frick, Gadatsch, Schäffer-Külz: Grundkurs SAP ERP</td>
</tr>
<tr>
<td></td>
<td>• systemabhängig, z.B. mySAP ERP (Schulungunterlagen)</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
eCommerce

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>eCommerce</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ECO</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>eCommerce</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Höß</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Höß, Prof. Dr. Kramer</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsentstudium: 68 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen
- Grundlagen der Informatik, Grundlagen der Betriebswirtschaftslehre

Lernziele/Kompetenzen:
- Erwerb von Kenntnissen in den Grundlagen des elektronischen Handels (eCommerce) und des elektronischen Geschäftsverkehrs (eBusiness)
- Fähigkeit zur Einordnung und Anwendung der für den elektronischen Handel relevanten technischen und inhaltlichen Standards
- Fähigkeit zur Konzeption und Auswahl adäquater Architekturen und Bezahlverfahren im elektronischen Handel

Inhalt:
- Grundlagen und Einsatzbereiche von eCommerce und eBusiness
- Geschäftsmodelle und Plattformen im elektronischen Handel (z.B. eShops, eMarketplaces)
- Grundlegende technische Standards im elektronischen Handel
- Inhaltliche Standards im elektronischen Handel (z.B. Produktidentifikation / -klassifikation, Produktkataloge, Geschäftstransaktionen)
- Sicherheitsaspekte und Bezahlverfahren
- Zukünftige Trends (z.B. mCommerce, Web 2.0)

Prüfungsvorleistung: Keine
Leistungsnachweis: Kein
Prüfungsleistung: Klausur (90 Minuten)
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Tafel, Overhead-Projektor, Beamer, Rechnerübungen, Moodle</th>
</tr>
</thead>
</table>
| Literatur: | - Meier, Stormer: eBusiness & eCommerce - Management der digitalen Wertschöpfungskette, Springer-Verlag
- Kollmann: E-Business – Grundlagen elektronischer Geschäftsprozesse in der Net Economy, Gabler Verlag
- Wirtz: Electronic Business, Gabler Verlag
- Aktuelle Fallbeispiele & vertiefende Spezialliteratur zu einzelnen Themenbereichen bzw. Standards im Bereich eCommerce / eBusiness |
| Software: | Keine |
Geo-Visualisierung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Geo-Visualisierung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GEO</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Geo-Visualisierung</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Coors</td>
</tr>
<tr>
<td>Lehrende:</td>
<td>Prof. Dr. Coors</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS:</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform:</td>
<td>Vorlesung mit integrierten Übungen (Ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>• Vermittlung grundlegender Konzepte und Techniken zur Visualisierung raumbezogener Daten und Prozesse</td>
</tr>
<tr>
<td></td>
<td>• Einsatz eines Geographischen Informationssystems zur Datenaufbereitung, Analyse und Präsentation nach kartographischen Regeln</td>
</tr>
<tr>
<td></td>
<td>• Auswahl innovativer Visualisierungsmethoden zur Präsentation und interaktiven Exploration sehr großer Datenbestände</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Visualisierungspipeline</td>
</tr>
<tr>
<td></td>
<td>• Visualisierung von GPS-Tracks und Routen in GoogleMaps / Google Earth (inkl. JavaScript)</td>
</tr>
<tr>
<td></td>
<td>• Douglas Peuker-Algorithmus</td>
</tr>
<tr>
<td></td>
<td>• Kartographische Präsentation</td>
</tr>
<tr>
<td></td>
<td>o Kartographische Variablen</td>
</tr>
<tr>
<td></td>
<td>o Farbmodelle und deren Umsetzung</td>
</tr>
<tr>
<td></td>
<td>o Qualitätskriterien für thematische Karten</td>
</tr>
<tr>
<td></td>
<td>• Beobachtungsraum</td>
</tr>
<tr>
<td></td>
<td>o Scattered Data Interpolation</td>
</tr>
<tr>
<td></td>
<td>o Voronoi-Diagramm (Berechnung von Voronoizellen, Fortune Algorithmus)</td>
</tr>
<tr>
<td></td>
<td>o Delauney Triangulierung</td>
</tr>
<tr>
<td></td>
<td>• Virtuelle Welten</td>
</tr>
<tr>
<td></td>
<td>o VRML, X3D, JOGL</td>
</tr>
<tr>
<td>Ressourcen-adaptive Visualisierung auf mobilen Endgeräten</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Projektarbeit</td>
<td></td>
</tr>
<tr>
<td>Visualisierung mit ArcGIS oder</td>
<td></td>
</tr>
<tr>
<td>Visualisierung mit Java / JOGL</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsvorleistung:	Keine
Leistungsnachweis:	Kein
Prüfungsleistung:	Projektarbeit
Medienformen:	Tafel, Beamer, Moodle
Literatur:	ArcGIS Tutorial
	eigenes Skript zur Vorlesung
	Dykes, MacEachren, Kraak : Exploring Geovisualization, Elsevier
Software:	ArcGIS
	Java SDK
Sondermodul Angewandte Informatik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Sondermodul Angewandte Informatik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SMD-A</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Sondermodul Angewandte Informatik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>5/6 (3. Studienjahr), 7</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Informatik 1 – 5 im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vor. Vorlesung mit integrierten Übungen (ca.65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Empfohlene</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Wird vom Prüfungsausschuss vorab definiert (s.a. SPO)</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Wird vom Prüfungsausschuss vorab definiert (s.a. SPO)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Overhead-Projektor, Moodle, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Software:</td>
<td>Projektabhängig</td>
</tr>
</tbody>
</table>
Module im Wahlpflichtmodul Mathematik

Statistik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Statistik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>STA</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Statistik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Bauer, Prof. Dr. Heizmann, Prof. Dr. Walter</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Mathematik im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien-</td>
<td>Keine</td>
</tr>
<tr>
<td>und Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Mathematik 1 und 2, Diskrete Mathematik</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, einfachere Zufallsexperimente mathematisch zu modellieren</td>
</tr>
<tr>
<td></td>
<td>• beherrschen Grundlagen aus der Wahrscheinlichkeitsrechnung sowie der beschreibenden und explorativen Statistik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Einführung: Was ist Statistik?</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen; Graphische Methoden</td>
</tr>
<tr>
<td></td>
<td>• Lage- und Streuungsmaße</td>
</tr>
<tr>
<td></td>
<td>• Grundbegriffe der Wahrscheinlichkeitsrechnung</td>
</tr>
<tr>
<td></td>
<td>• Mengenlehre und Aussagen</td>
</tr>
<tr>
<td></td>
<td>• Diskrete Zufallsvariable mit Verteilungen</td>
</tr>
<tr>
<td></td>
<td>• Stetige Zufallsvariable mit Verteilungen</td>
</tr>
<tr>
<td></td>
<td>• Korrelations- und Regressionsanalyse</td>
</tr>
<tr>
<td></td>
<td>• Der zentrale Grenzwertsatz</td>
</tr>
<tr>
<td></td>
<td>• Stochastische Modelle in der Anwendung</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Overhead-Projektor, Rechnervorführung, Beamer, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Vorlesungsskriptum Prof. Dr. Walter</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Jahnke: Stochastik, Cornelsen Verlag</td>
</tr>
<tr>
<td></td>
<td>Hackel, Christoph: Starthilfe Stochastik, Teubner Verlag</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Numerik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Numerik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>NUM</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Numerik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Schneider, Prof. Dr. Walter</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Mathematik im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Mathematik 1 und 2</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Erweiterung der mathematischen Grundkenntnisse</td>
</tr>
<tr>
<td></td>
<td>Einführung in die Denkweise und Methoden der Numerik</td>
</tr>
<tr>
<td></td>
<td>Möglichkeiten und Fallstricke des numerischen Rechnens auf Computern aufzeigen und vermeiden</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen: Darstellungen, Fehlerrechnung, Kondition</td>
</tr>
<tr>
<td></td>
<td>Auswertung elementarer Funktionen</td>
</tr>
<tr>
<td></td>
<td>Zusammenhang zwischen Datenstrukturen und Algorithmen am Beispiel von Matrizen</td>
</tr>
<tr>
<td></td>
<td>Iterationsverfahren: Allgemeine Iteration, Nullstellensuche, Konvergenzordnung</td>
</tr>
<tr>
<td></td>
<td>Polynomiale Interpolation</td>
</tr>
<tr>
<td></td>
<td>Splines</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Overhead-Projektor, Rechnervorführung, Beamer, Moodle</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Opfer: Numerische Mathematik für Anfänger, Vieweg + Teubner Verlag</td>
</tr>
<tr>
<td></td>
<td>Vorlesungsskript Prof. Dr. A. Walter</td>
</tr>
</tbody>
</table>
Operations Research

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Operations Research</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>OPR</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Operations Research</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Homberger</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Homberger</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Mathematik im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca. 65% / 35%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 82 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung:</td>
<td>Mathematik 1 und 2, Programmieren 1 und 2</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Die Studierenden sind in der Lage,</td>
</tr>
<tr>
<td></td>
<td>• Denkweise und grundlegende Methoden der Operations Research anzuwenden sowie</td>
</tr>
<tr>
<td></td>
<td>• Realweltprobleme mit Hilfe von OR-Methoden zu lösen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Modelle und Vorgehensweise im Operations Research</td>
</tr>
<tr>
<td></td>
<td>• Lineare Optimierung</td>
</tr>
<tr>
<td></td>
<td>• Graphentheorie</td>
</tr>
<tr>
<td></td>
<td>• Netzplantechnik und Projektmanagement</td>
</tr>
<tr>
<td></td>
<td>• Ganzzahlige und kombinatorische Optimierung</td>
</tr>
<tr>
<td></td>
<td>• Anwendungen auf Transport- und Lagerhaltungsprobleme</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsnachweis:</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Overhead-Projektor, Beamer, Rechnervorführung, Moodle</td>
</tr>
<tr>
<td></td>
<td>• Gohout: Operations Research, Oldenbourg-Verlag</td>
</tr>
<tr>
<td></td>
<td>• Runzheimer, Cleff, Schäfer: Operations Research 1, Gabler-Verlag</td>
</tr>
<tr>
<td>Software:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Sondermodul Mathematik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor-Studiengang Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Sondermodul Mathematik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SMD-M</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Sondermodul Mathematik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3/4 (2. Studienjahr)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Mathematik im Hauptstudium</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierten Übungen (ca.75% / 25%)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 68 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Studien- und Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Prüfungsvorleistung:</td>
<td>Studienarbeit</td>
</tr>
<tr>
<td>Leistungsnachweis:</td>
<td>Kein</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Overhead-Projektor, Moodle, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig vom Thema</td>
</tr>
<tr>
<td>Software:</td>
<td>Projektabhängig</td>
</tr>
</tbody>
</table>